Theoretica chimica acta

, Volume 31, Issue 1, pp 1–17 | Cite as

A comparative ab initio study of ethylene, acetylene and benzene

  • Inga Fischer-Hjalmars
  • Per Siegbahn


Ground state properties have been calculated by use of a medium-sized Gaussian basis set and comparison with other bases has been made. Contraction to “double-zeta” of a comparatively small basis is found to be superior to a large set of primitive Gaussians contracted to minimal basis. Molecular optimization is not important for double-zeta bases. Inclusion of a balanced set of polarization functions is essential in all cases studied. Population analysis gives a certain insight in molecular properties but contour maps are found to be significantly superior. This is demonstrated on bonding properties of corresponding orbitals within the series. In case of benzene Slater's energyband plot is shown to be useful for classifying bonding properties.

Key words

Ab initio calculation Basis set Hydrocarbons Ionization potentials Orbital mapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roos,B., Siegbahn,P.: Theoret. Chim. Acta (Berl.) 17, 209 (1970)Google Scholar
  2. 2.
    Roos,B., Siegbahn,P.: Theoret. Chim. Acta (Berl.) 17, 199 (1970)Google Scholar
  3. 3.
    Schulman,J.M., Hornback,C.J., Moskowitz,J.W.: Chem. Physics Letters 8, 361 (1971)Google Scholar
  4. 4.
    van Duynenvelt, F.: Private communicationGoogle Scholar
  5. 5.
    Huzinaga,S.: J. Chem. Phys. 42, 1293 (1965)Google Scholar
  6. 6.
    Meza,S., Wahlgren,U.: Theoret. Chim. Acta (Berl.) 21, 323 (1971)Google Scholar
  7. 7.
    Siegbahn,P.: Chem. Physics Letters 8, 245 (1971)Google Scholar
  8. 8.
    Mulliken,R.S.: J. Chem. Phys. 23, 1833 (1955)Google Scholar
  9. 9.
    See e.g. Cottrell,T.L.: The strengths of chemical bonds. London: Butterworths 1954Google Scholar
  10. 10.
    See e.g. Herzberg,G.: Molecular spectra and molecular structure Vol. II. Infrared and raman spectra of polyatomic molecules. New York: Van Nostrand 1951Google Scholar
  11. 11.
    Millie,P., Berthier,G.: Intern. J. quant. Chem. 2 S, 67 (1968)Google Scholar
  12. 12.
    Bagus,P.S., Schaefer III,H.F.: J. Chem. Phys. 56, 224 (1972)Google Scholar
  13. 13.
    McLean,A.D., Yoshimine,M.: Tables of linear molecular wave functions, Supplement to IBM J. Res. Develop. 12, 206 (1968)Google Scholar
  14. 14.
    Snyder, L. C., Basch, H.: Molecular wave functions and properties. Wiley-Interscience 1972Google Scholar
  15. 15.
    Schulman,J.M., Moskowitz,J.W.: J. Chem. Phys. 47, 3491 (1967)Google Scholar
  16. 16.
    Buenker,R.J., Whitten,J.L., Petke,J.D.: J. Chem. Phys. 49, 2261 (1968)Google Scholar
  17. 17.
    Almlöf, J., Johansen, H., Roos, B., Wahlgren, U.: J. Electron Spectr. In pressGoogle Scholar
  18. 18.
    Fridh,C., Åsbrink,L., Lindholm,E.: Chem. Phys. Letters 15, 282 (1972)Google Scholar
  19. 18a.
    Lindholm,E., Fridh,C., Åsbrink,L.: Discussions Faraday Soc. 54, 127 (1972)Google Scholar
  20. 18b.
    Lindholm, E.: Discussions Faraday Soc. 54 (1972)Google Scholar
  21. 18c.
    Price, W. C.: Discussions Faraday Soc. 54 (1972)Google Scholar
  22. 19.
    Slater,J.C.: Quantum theory of molecules and solids 1. New York: McGraw-Hill 1963Google Scholar
  23. 20.
    Jonsson,B. Ö., Lindholm,E.: Arkiv Fysik 39, 65 (1969)Google Scholar
  24. 21.
    Roos, B.: Private communicationGoogle Scholar
  25. 22.
    Buenker,R.J., Peyerimhoff,S.D., Whitten,J.L.: J. Chem. Phys. 46, 2029 (1967)Google Scholar
  26. 23.
    Clementi,E., Popkie,H.: J. Chem. Phys. 57, 4870 (1972)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Inga Fischer-Hjalmars
    • 1
  • Per Siegbahn
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of StockholmStockholmSweden

Personalised recommendations