Theoretica chimica acta

, Volume 73, Issue 4, pp 307–316 | Cite as

Counterpoise estimates of the BSSE in the evaluation of protonation energies

  • Otilia Mó
  • José Luis G. de Paz
  • Manuel Yáñez


Counterpoise estimates of the BSSE in the evaluation of protonation energies have been calculated for basis sets ranging from minimal to split-valence plus polarization quality. Three-, five- and six-membered-ring heterocycles have been chosen as suitable model compounds for this study. Counterpoise corrections are significant, at the minimal basis set and 3–21G levels, when considering both, absolute and relative protonation energies and depend on the nature of the centre which undergoes protonation. In general, second- and third-order counterpoise corrections to the protonation energies are comparable to the corresponding SCF values. BSSE depend not only on the size of the basis sets but also on their quality. The presence in the basis of quite diffuse functions (either sp or d) leads to lower protonation energies and greater BSSE. Relative protonation energies are not substantially affected by BSSE or correlation effects.

Key words

BSSE Protonation energies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bowers MT, Aue DH, Webb HM, McIver Jr RT (1971) J Am Chem Soc 93:4314Google Scholar
  2. 2.
    Briggs JR, Yamdagni R, Kebarle P (1972) J Am Chem Soc 94:5128Google Scholar
  3. 3. (a)
    Hehre WJ, McIver Jr RT, Pople JA, Schleyer PvR (1974) J Am Chem Soc 96:7196Google Scholar
  4. 3. (b)
    DeFrees DJ, McIver Jr RT, Hehre WJ (1977) J Am Chem Soc 99:3853Google Scholar
  5. 3. (c)
    Summerhays KD, Pollak SK, Taft RW, Hehre WJ (1977) J Am Chem Soc 99: 4585Google Scholar
  6. 3. (d)
    Jorgenson WL (1978) J Am Chem Soc 100:1049Google Scholar
  7. 3. (e)
    Catalán J, Mó O, Pérez P, Yáñez M (1979) J Am Chem Soc 101:6520Google Scholar
  8. 3. (f)
    Del Bene JE (1979) J Am Chem Soc 101:7146; Del Bene JE (1980) J Am Chem Soc 102:5191Google Scholar
  9. 3. (g)
    Hehre WJ, Taagepera M, Taft RW, Topsom RD (1981) J Am Chem Soc 103:1344Google Scholar
  10. 3. (h)
    Catalán J, de Paz JLG, Yáñez M, Elguero J (1984) J Am Chem Soc 106:6552Google Scholar
  11. 3. (i)
    Meot-Ner (Mautner) M, Liebman JF, Del Bene JE (1986) J Org Chem 51:1105Google Scholar
  12. 4.
    Topsom RD (1981) J Am Chem Soc 103:39; Escudero F, Mó O, Yáñez M (1983) J Chem Soc Perkin Trans 2 1735Google Scholar
  13. 5.
    Meot-Ner(Mautner) M, Nelsen SF, Willi MR, Frigo TB (1984) J Am Chem Soc 106:7384Google Scholar
  14. 6.
    Taft RW, Anvia F, Taagepera M, Catalán J, Elguero J (1986) J Am Chem Soc 108:3237Google Scholar
  15. 7.
    Catalán J, Mó O, Pérez P, Yáñez M, Amat-Guerri F (1984) Nouv J Chim 8:87Google Scholar
  16. 8.
    Jasien PG, Stevens WJ (1985) J Chem Phys 83:2984Google Scholar
  17. 9.
    Freiser BS, Woodin RL, Beauchamp JL (1975) J Am Chem Soc 99:6893Google Scholar
  18. 10.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, p 314Google Scholar
  19. 11.
    Del Bene JE (1984) J Comput Chem 5:381Google Scholar
  20. 12.
    Mó O, de Paz JLG, Yáñez M (1986) J Phys Chem 90:5597Google Scholar
  21. 13.
    Mó O, de Paz JLG, Yáñez M (1987) J Mol Struct 150:135Google Scholar
  22. 14.
    Johanson A, Kollman P, Rothenberg S (1973) Theor Chim Acta 29:167; Price SL, Stone AJ (1979) Chem Phys Lett 65:127; Newton MD, Kestner NR (1983) Chem Phys Lett 94:198; Wells BH, Wilson S (1983) Mol Phys 50:1295; Chalansinski G, Gutowski M (1985) Mol Phys 54:1173; Schwenke DW, Truhlar DG (1985) J Chem Phys 82:2418; Bonaccorsi R, Cammi R, Tomasi J (1986) Int J Quantum Chem 29:373; Gutowski M, Van Duijneveldt FB, Chalansinski G, Piela L (1986) Chem Phys Lett 129:325; Surjan PR, Poirier RA (1986) Chem Phys Lett 128:258Google Scholar
  23. 15.
    Hobza P, Schneider B, Cársky P, Zahranik R (1986) J Mol Struct 138:377Google Scholar
  24. 16.
    Szczesniak MM, Scheiner S (1986) J Chem Phys 84:6328Google Scholar
  25. 17.
    van Duijneveldt-van de Rijdt JGCM, van Duijneveldt FB (1982) J Mol Struct 89:185Google Scholar
  26. 18.
    Latajka Z, Scheiner S (1984) Chem Phys Lett 105:435Google Scholar
  27. 19.
    Siegbahn PEM, Yoshimine M, Pacansky J (1983) J Chem Phys 78:1384Google Scholar
  28. 20.
    Murthaugh BA, Sargent RWH (1972) Compt J 131:185; Schlegel HB (1982) J Comput Chem 3:214Google Scholar
  29. 21.
    Pople JA, Seeger R, Krishnan R (1977) Int J Quantum Chem Quantum Chem Symp 11:149Google Scholar
  30. 22.
    Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91Google Scholar
  31. 23.
    Krishnan R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244Google Scholar
  32. 24.
    Boys SF, Bernardi F (1970) Mol Phys 19:553Google Scholar
  33. 25.
    Mó O, de Paz JLG, Yáñez M (1987) J Phys Chem (in press)Google Scholar
  34. 26.
    Aue DH, Webb HM, Davidson WR, Vidal M, Bowers MT, Goldwhite H, Vertal LE, Douglas JE, Kollman PA, Kenyon GL (1980) J Am Chem Soc 102:5151Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Otilia Mó
    • 1
  • José Luis G. de Paz
    • 1
  • Manuel Yáñez
    • 1
  1. 1.Departamento de Química, C-XIV, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations