Theoretica chimica acta

, Volume 5, Issue 5, pp 435–439 | Cite as

π Electronic distribution, charge transfer and intensities of infrared absorption bands in borazine

  • Mario Giambiagi
  • Myriam Segre De Giambiagi
  • Enrique Silberman
Commentationes

Abstract

The π charge distribution of borazine is obtained by an LCAO calculation, modifying slightly an approximation already applied to pyridine. A simple method is proposed for the comparison of the relation between the charge transfer as calculated in the NH and BH bonds with the experimental relation between the intensities of the corresponding absorption bands in the infrared spectrum. The influence of the π distribution over the σ skeleton must be considered in order to obtain a better agreement with experimental data.

Keywords

Experimental Data Physical Chemistry Inorganic Chemistry Organic Chemistry Absorption Band 

Résumé

On obtient la distribution de charge π de la borazine par moyen d'un calcul LCAO, en modifiant légèrement une approximation appliée auparavant à la pyridine. On propose une méthode simple pour comparer la relation entre la transference de charge calculée dans les liaisons NH et BH avec la relation expérimentale entre les intensités des bandes d'absortion correspondantes du spectre infrarouge. On doit considérer l'influence de la distribution π sur le squelette σ pour améliorer l'accord avec les données expérimentales.

Zusammenfassung

Die π-Elektronendichte in Borazol wird mit einem LCAO-Verfahren berechnet, das mit Ausnahme einer geringfügigen Modifikation schon auf Pyridin angewandt worden ist. Mit Hilfe einer einfachen Methode werden die berechneten Ladungübergänge in der NH und BH Bindung mit den entsprechenden Absorptionsschwingungsbanden verglichen. Der Einfluß der π-Elektronenverteilung auf das σ-Gerüst wird berücksichtigt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chalvet, O., R. Daudel, and J. J. Kaufman: J. Amer. chem. Soc. 87, 399 (1965).Google Scholar
  2. [2]
    Chirgwin, B. H., and C. A. Coulson: Proc. Roy. Soc. A201, 196 (1950).Google Scholar
  3. [3]
    Davies, D. W.: Trans. Faraday Soc. 56, 1713 (1960).Google Scholar
  4. [4]
    Favini, G., y S. Carra: Gazz. chim. ital. 87, 1367 (1957).Google Scholar
  5. [4a]
    Carra, S., S. Polezzo y M. Simonetta: Rend. Accad. Linc. 23, 428 (1957).Google Scholar
  6. [5]
    Ferreira, R.: Trans. Faraday Soc. 59, 1064 (1963).Google Scholar
  7. [6]
    Hinze, J., and H. H. Jaffé: J. physic. Chem. 67, 1501 (1963).Google Scholar
  8. [7]
    Hoffmann, R.: J. chem. Physics 40, 2474 (1964).Google Scholar
  9. [8]
    Kohlrausch, K. F.: Acta physica austriaca 3, 452 (1949).Google Scholar
  10. [9]
    Mac Dowell, S., M. Giambiagi, and M. Segre De Giambiagi: Nuovo Cimento. 35, 410 (1965).Google Scholar
  11. [10]
    Pauling, L.: The nature of the chemical bond, p. 302. New York: Cornell University Press 1960.Google Scholar
  12. [11]
    Platt, J. R., H. B. Klevens, and G. W. Schaeffer: J. chem. Physics 15, 598 (1947).Google Scholar
  13. [12]
    Pritchard, H. O., and F. H. Sumner: Proc. Roy. Soc. A235, 136 (1956).Google Scholar
  14. [13]
    Rector, C. W., G. W. Schaeffer, and J. R. Platt: J. chem. Physics 17, 460 (1949).Google Scholar
  15. [14]
    Segre De Giambiagi, M., M. Giambiagi et R. Ferreira: J. Chim. physique 61, 697 (1964).Google Scholar
  16. [15]
    Silberman, E.: Ohio State University Simposium (1964).Google Scholar
  17. [16]
    Stock, A., u. E. Pohland: Chem. Ber. 59, 2215 (1926).Google Scholar
  18. [17]
    Watanabe, H., K. Ito, and M. Kubo: J. Amer. chem. Soc. 82, 3294 (1960).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Mario Giambiagi
    • 1
  • Myriam Segre De Giambiagi
    • 2
  • Enrique Silberman
    • 2
  1. 1.Dpto. de Física, Facultad de IngenieríaBuenos AiresArgentina
  2. 2.Dpto. de Física, Facultad de Ciencias ExactasBuenos AiresArgentina

Personalised recommendations