Theoretica chimica acta

, Volume 11, Issue 5, pp 441–451 | Cite as

A comparison of different contractions for molecular calculations with gaussian-type functions

  • C. Salez
  • A. Veillard


The effect of various possible contractions of a gaussian basis set is investigated for atomic and molecular calculations. The gaussian basis set used consists of 11s-type functions and 7p-type functions. Atomic calculations for the atoms Li to F are reported with fourteen different contractions of the s orbitals. The effect of the same contractions has also been investigated for molecular calculations of LiH, BH, CH2, NH 2 , H2O, and FH, together with the effect of the contraction for the p orbitals and for the s orbitals of the hydrogen atom. It is shown that the contraction in itself does not affect seriously the quality of a molecular calculation, but that a wrong choice of the contraction can produce a poor result.


Hydrogen Physical Chemistry Inorganic Chemistry Organic Chemistry Hydrogen Atom 


Der Einfluß der verschiedensten Kontraktionen einer Basis von Gauß-Funktionen bei Berechnung atomarer oder molékularer Systeme wird untersucht. Diese Basis besteht zunächst aus 11 s-Funktionen und 7 p-Funktionen. 14 verschiedene Kontraktionen werden für die Atome Li bis F sowie für die Moleküle LiH, BH, CH2, NH 2 , H2O und FH getestet. Wie zu erwarten wird die Genauigkeit nicht wesentlich beeinflußt, solange man nur die „richtigen“ Kontraktionen wählt.


On étudie l'effet des différentes contractions possibles d'une base de fonctions gaussiennes dans le cas d'atomes et de molécules. La base de fonctions gaussiennes comprend 11 fonctions du type s et 7 fonctions du type p. On donne les résultats de quatorze différentes contractions des orbitales s pour les atomes du Li à F ainsi que pour les molécules LiH, BH, CH2, NH - 2 , H2O et FH. L'effet de la contraction des orbitales p ainsi que des orbitales s des atomes d'hydrogène est également discuté pour les molécules CH2 et H2O. On montre que la contraction par elle-même n'affecte pas sensiblement les résultats obtenus a condition d'effectuer un choix judicieux parmi les contractions possibles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McLean, A. D., and M. Yoshimine: IBM Res. Develop. 12, 206 (1968).Google Scholar
  2. 2.
    Bishop, D. M.: Advances in Quantum Chemistry, edited by P. O. Löwdin. New York: Academic Press 1967.Google Scholar
  3. 3.
    Huzinaga, S.: J. chem. Physics 42, 1293 (1965).Google Scholar
  4. 4.
    Clementi, E., and D. R. Davis: J. computational Physics 2, 223 (1967).Google Scholar
  5. 5.
    —: IBM Res. Develop. 9, 1 (1965).Google Scholar
  6. 6.
    —: Chem. Rev. 68, 341 (1968).Google Scholar
  7. 7.
    Huzinaga, S., V. Coiro, E. Rusconi, and E. Clementi: Unpublished results.Google Scholar
  8. 8.
    Bagus, P. S., T. L. Gilbert, C. C. J. Roothaan, and H. D. Cohen: Accurate SCF Wavefunctions for First Row Atoms and Ions. Unpublished.Google Scholar
  9. 9.
    Roothaan, C. C. J., and P. S. Bagus: Methods in Computational Physics, 2, 47. New York: Academic Press 1963.Google Scholar
  10. 10.
    Krauss, M.: Compendium of ab initio Calculations of Molecular Energies and Properties. NBS Technical Note 438, December 1967.Google Scholar
  11. 11.
    Roos, B., C. Salez, A. Veillard, and E. Clementi: A General Program for Calculation of Atomic SCF Orbitals by the Expansion Method, Special IBM Technical Report. San Jose, California: IBM Research Laboratory 1968.Google Scholar
  12. 12.
    Coiro, V., E. Rusconi, and E. Clementi: To be published.Google Scholar
  13. 13.
    Krauss, M.: J. Res. Natl. Bur. Std. 68 A, 635 (1964).Google Scholar
  14. 14.
    Moskowitz, J. W., and M. C. Harrison: J. chem. Physics 43, 3550 (1965).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • C. Salez
    • 1
  • A. Veillard
    • 1
  1. 1.IBM Research LaboratorySan José

Personalised recommendations