Skip to main content
Log in

A molecular orbital study of nitrogen inversion in aniline with extensive geometry optimization

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The geometry and energy of aniline have been calculated using the 6-31G and 6-31G*(5D) basis sets for the planar structure and various pyramidal structures, assuming that the ring and the N-atom bonded to it lie in the same plane, but otherwise with full geometry optimization. With the 6-31G basis set the planar structure is predicated to be the most stable, whereas the inclusion of polarization functions in the 6-31G*(5D) basis set finds a pyramidal structure with the out-of-plane angle φ=42.3° to be most stable and the energy barrier to inversion via the planar transition state to be 1.59±0.02 kcal mol−1, in close agreement with experiment. Completing the optimization, allowing the N-atom and the C- and H-atoms of the ring to take up equilibrium out-of-plane positions increases the calculated energy carrier to inversion by less than 0.1 kcal mol−1 to 1.66 kcal mol−1. The ring adopts a very shallow inverted boat-type conformation with ∠N7-C1⋯C4 = 2.0°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brand JCD, Williams DR, Cook TJ (1966) J Mol Spectrosc 20:359

    Google Scholar 

  2. Quack M, Stockburger M (1972) J Mol Spectrosc 43:87

    Google Scholar 

  3. Lister DG, Tyler JK, Hℷ JH, Larsen NW (1974) J Mol Struct 23:253

    Google Scholar 

  4. Larsen NW, Hansen EL, Nicolaisen FM (1976) Chem Phys Letters 34:584

    Google Scholar 

  5. Kydd RA, Krueger PJ (1977) Chem Phys Letters 49:539

    Google Scholar 

  6. Hollas JM, Howson MR, Ridley T, Haloneu L (1983) Chem Phys Letters 98:611

    Google Scholar 

  7. Strametz CC, Schmidtke H-H (1976) Theoret Chim Acta 42:13

    Google Scholar 

  8. Parr WJE, Wasylishen RE (1977) J Mol Struct 38:272

    Google Scholar 

  9. Pople JA, Gordon M (1967) J Am Chem Soc 89:4253

    Google Scholar 

  10. Hehre WJ, Radom L, Pople JA (1972) J Am Chem Soc 94:1496

    Google Scholar 

  11. Wolf A, Voets A, Schmidke H-H (1980) Theoret Chim Acta 54:229

    Google Scholar 

  12. Coon JB, Haugle NW, McKenzie RD (1966) J Mol Spectrosc 20:107

    Google Scholar 

  13. Domenicano A, Schultz G, Kolonitz M, Hargittai I (1979) J Mol Struct 53:197

    Google Scholar 

  14. Larsen, NW (1979) J Mol Struct 51:175

    Google Scholar 

  15. Amir-Ebrakimi V, Choplin A, Demaison J, Roussy G (1981) J Mol Spectrosc 89:42

    Google Scholar 

  16. Schultz G, Hargittai I, Seip R (1981) Z Naturfursch 36a:669

    Google Scholar 

  17. Domenicano A, Schultz G, Hargittai I (1982) J Mol Struct 78:97

    Google Scholar 

  18. Almennigen A, Hargittai I, Samdal S, Brunvol J, Domenicano A, Lowrey A (1983) J Mol Struct 96:373

    Google Scholar 

  19. Doraiswamy S, Sharma SD (1983) J Mol Struct 102:81

    Google Scholar 

  20. Colapietro M, Domenicano A, Portaleone G, Schultz G, Hargittai I (1984) J Mol Struct 112, 141

    Google Scholar 

  21. Bock CW, Trachtman M. George P. (1985) 122:155 J Mol Struct Theochem

    Google Scholar 

  22. Skaarup S, Griffin LL, Boogs JE (1976) J Am Chem Soc 98:3140

    Google Scholar 

  23. Rauk A, Allen LC, Clementi E (1970) J Chem Phys 52:4133

    Google Scholar 

  24. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Google Scholar 

  25. Roth R, private communication

  26. Pople JA et al. (1981) QCPE 13:406

    Google Scholar 

  27. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Google Scholar 

  28. Binkley JS, Frisch MJ, DeFrees DJ, Raghavachari K, Whiteside RA, Schlegel HB, Fluder EM, Pople JA (1982) Carnegie-Mellon University, Pittsburgh, PA, 15213

  29. Bock CW, George P, Trachtman M (1985) Chem Phys 93:431

    Google Scholar 

  30. Lathan WA, Hehre WJ, Curtiss LA, Pople JA (1971) J Am Chem Soc 93:6377

    Google Scholar 

  31. Stevens RM (1971) J Chem Phys 55:1725

    Google Scholar 

  32. Schmiedekamp A, Skaarup S, Pulay P, Boggs JE (1977) J Chem Phys 66:5769

    Google Scholar 

  33. Carlsen NR, Radom L, Riggs NV, Rodwell WR (1979) J Am Chem Soc. 101:2233

    Google Scholar 

  34. Rodwell WR, Radom L (1980) J Chem Phys 72:2205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, C.W., George, P. & Trachtman, M. A molecular orbital study of nitrogen inversion in aniline with extensive geometry optimization. Theoret. Chim. Acta 69, 235–245 (1986). https://doi.org/10.1007/BF00526422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00526422

Key words

Navigation