Advertisement

Theoretica chimica acta

, Volume 69, Issue 1, pp 41–49 | Cite as

Conformational behaviour of 2,2′-bipyrrole

An ab initio approach
  • Enrique Ortí
  • José Sánchez-Marín
  • Francisco Tomás
Article

Abstract

The rotational potential around the interannular bond in 2,2′-bipyrrole has been calculated making use of standard minimal STO-3G and split valence 4-31G basis sets. Geometrical optimization concerning the most significant interannular internal parameters has been performed with both basis sets. The trans conformer is predicted to be more stable than the cis. The minimal basis set predicts the existence of a cisoid-gauche minimum which after limited optimization becomes very shallow and it seems to be an artifact of the rigid rotor approximation. At 4-31G level, both the trans and cis conformers represent maxima in the potential curve and two gauche minima appear at θ=46.0° and θ=147.6°, the latter being the absolute minimum. The absolute maximum of the potential curve corresponds to the cis conformer.

Key words

2,2′-Bipyrrole Rotational barrier MO calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diaz, A. F., Kanazawa, K. K., Gardini, G. P.: J. Chem. Soc., Chem. Commun. 635 (1979)Google Scholar
  2. 2.
    Street, G. B., Clarke, T. C., Kroumbi, M., Kanazawa, K. K., Lee, V., Pfluger, P., Scott, J. C., Weiser, G.: Mol. Cryst. Liq. Cryst. 83, 253 (1982)Google Scholar
  3. 3.
    Pfluger, P., Kroumbi, M., Street, G. B., Weiser, G.: J. Chem. Phys. 76, 3212 (1983)Google Scholar
  4. 4.
    Scott, J. C., Pfluger, P., Kroumbi, M., Street, G. B.: Phys. Rev. B 28, 2140 (1983)Google Scholar
  5. 5.
    Burgmayer, P., Murray, R. W.: J. Phys. Chem. 88, 2515 (1984)Google Scholar
  6. 6.
    Skotheim, T. J., Lundström, I., Prejza, J.: J. Electrochem. Soc. 128, 1625 (1981)Google Scholar
  7. 7.
    Skotheim, T. J., Peterson, L. G., Inganas, O., Lundström, I.: J. Electrochem. Soc. 129, 1737 (1982)Google Scholar
  8. 8.
    Bjorklund, R. B., Lundström, I.: J. Electron. Mater. 13, 211 (1984)Google Scholar
  9. 9.
    Diaz, A. F., Vallejo, J. M., Duran, A. M.: IBM J. Res. Dev. 25, 42 (1981)Google Scholar
  10. 10.
    Yakushi, K., Lauchian, L. J., Clarke, T. C., Street, G. B.: J. Chem. Phys. 79, 4774 (1983)Google Scholar
  11. 11.
    Salaneck, W. R., Erlandsson, R., Prejza, J., Lundström, I., Inganas, O.: Synth. Met. 5, 125 (1983)Google Scholar
  12. 12.
    Pfluger, P., Street, G. B.: J. Chem. Phys. 80, 544 (1984)Google Scholar
  13. 13.
    Ford, W. K., Duke, C. B., Salaneck, W. R.: J. Chem. Phys. 77, 5030 (1982)Google Scholar
  14. 14.
    Brédas, J. L., Thémans, B., André, J. M.: J. Chem. Phys. 78, 6137 (1983)Google Scholar
  15. 15.
    Brédas, J. L., Silbey, R., Boudreaux, D. S., Chance, R. R.: J. Am. Chem. Soc. 105, 6555 (1983)Google Scholar
  16. 16.
    Brédas, J. L., Thémans, B., Fripiat, J. G., André, J. M., Chance, R. R.: Phys. Rev. B 29, 6761 (1984)Google Scholar
  17. 17.
    Brédas, J. L., Scott, J. C., Yakushi, K., Street, G. B.: Phys. Rev. B 30, 1023 (1984)Google Scholar
  18. 18.
    André, J. M., Vercauteren, D. P., Street, G. B., Brédas, J. L.: J. Chem. Phys. 80, 5643 (1984)Google Scholar
  19. 19.
    Welsh, W. J., Jaffé, H. H., Kondo, N., Mark, J. E.: Makromol. Chem. 183, 801 (1982)Google Scholar
  20. 20.
    Shank, C. V., Yen, R., Fork, R. L., Orenstein, J., Baker, G. L.: Phys. Rev. Lett. 49, 1660 (1982)Google Scholar
  21. 21.
    Galasso, V., Trinajstić, N.: Tetrahedron 28, 4419 (1972)Google Scholar
  22. 22.
    Ortí, E., Tomás, F., Sánchez-Marín, J.: J. Mol. Struct., Theochem 104, 197 (1983)Google Scholar
  23. 23.
    Nygaard, L., Nielsen, J. J., Kirchheiner, J., Maltesen, G., Rastrup-Andersen, J., Sorensen, G. O.: J. Mol. Struct. 3, 491 (1969)Google Scholar
  24. 24.
    Ortí, E., Sánchez-Marín, J., Tomás, F.: J. Mol. Struct., Theochem 108, 199 (1984)Google Scholar
  25. 25.
    Hehre, W. J., Lathan, W. A., Ditchfield, R., Newton, M. D., Pople, J. A.: GAUSSIAN-70, QCPE Program No. 236 (1973)Google Scholar
  26. 26.
    Hehre, W. J., Stewart, R. F., Pople, J. A.: J. Chem. Phys. 51, 2657 (1969)Google Scholar
  27. 27.
    Ditchfield, R., Hehre, W. J., Pople, J. A.: J. Chem. Phys. 54, 724 (1971)Google Scholar
  28. 28.
    Payne, P. W., Allen, L. C.: Barriers to rotation and inversion. In: Schaefer III, H. F., (ed.) Applications of electronic structure theory, Chap. 2. New York: Plenum Press 1977Google Scholar
  29. 29.
    De Maré, G. R., Neisius, D.: J. Mol. Struct, Theochem 109, 103 (1984)Google Scholar
  30. 30.
    Bock, C. W., George, P., Trachtman, M.: Theoret. Chim. Acta (Berl.) 64, 293 (1984)Google Scholar
  31. 31.
    De Maré, G. R.: In: Csizmadia, I. G., Daudel, R. (eds.) Computational theoretical organic chemistry. NATO ASI Ser. C 67, 371 (1981)Google Scholar
  32. 32.
    Radom, L., Hehre, W. J., Pople, J. A.: J. Am. Chem. Soc. 94, 2371 (1972)Google Scholar
  33. 33.
    De Maré, G. R., Peterson, M. R.: J. Mol. Struct., Theochem 89, 213 (1982)Google Scholar
  34. 34.
    Scharfenberg, P., Jung, C.: Chem. Phys. Lett. 57, 131 (1978)Google Scholar
  35. 35.
    Birner, P., Hofmann, H.-J.: Int. J. Quantum Chem. 21, 833 (1982)Google Scholar
  36. 36.
    Momicchioli, F., Baraldi, I., Bruni, M. C.: Chem. Phys. 70, 161 (1982)Google Scholar
  37. 37.
    Barone, V., Lelj, F., Cauletti, C., Piancastelli, M. N., Russo, N.: Mol. Phys. 49, 599 (1983)Google Scholar
  38. 38.
    Brédas, J. L., Street, G. B., Thémans, B., André, J. M.: J. Chem. Phys. 83, 1323 (1985)Google Scholar
  39. 39.
    De Maré, G. R., Peterson, M. R.: J. Mol. Struct., Theochem 104, 115 (1983)Google Scholar
  40. 40.
    Rao, B. K., Darsey, J. A., Kestner, N. R.: J. Chem. Phys. 79, 1377 (1983)Google Scholar
  41. 41.
    Bock, C. W., George, P., Trachtman, M.: J. Mol. Struct., Theochem 109, 1 (1984)Google Scholar
  42. 42.
    Daudey, J. P., Trinquier, G., Barthelat, J. C., Malrieu, J. P.: Tetrahedron 36, 3399 (1980)Google Scholar
  43. 43.
    Charge distributions are available upon request from the authors. 4-31G total dipole moments for the transoid- and cisoid-gauche minima are 0.95 and 2.90 D respectivelyGoogle Scholar
  44. 44.
    Osamura, Y., Schaefer III, H. F.: J. Chem. Phys. 74, 4576 (1981); De Maré, G. R.: J. Mol. Struct., Theochem 107, 127 (1984)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Enrique Ortí
    • 1
  • José Sánchez-Marín
    • 1
  • Francisco Tomás
    • 1
  1. 1.Departamento de Química-Física. Facultad de QuímicaUniversidad de ValenciaBurjasotSpain

Personalised recommendations