Theoretical and Experimental Chemistry

, Volume 19, Issue 5, pp 513–522 | Cite as

Quantum-chemical investigation of the mechanism of electronic disproportionation of stable radicals by the action of acids

  • L. S. Degtyarev
  • A. A. Stetsenko


Disproportionation Stable Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Golubev, V. D. Sen', I. V. Kulyk, and A. L. Aleksandrov, “Mechanism of acid disproportionation of di-tert-alkylnitroxyl radicals,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 10, 2235–2243 (1975).Google Scholar
  2. 2.
    A. A. Volod'kin, V. V. Ershov, A. I. Prokof'ev, et al., “Kinetic investigation of the reaction of tri-tert-butylphenoxyl radical with hydrogen halides,” Izv. Akad, Nauk SSSR, No. 4, 856–858 (1971).Google Scholar
  3. 3.
    O. M. Polumbrik and G. F. Dvorko, “Kinetics and mechanism of disproportionation of triphenylverdazyl in the presence of monochloroacetic acid,” Kinet. Katal., 12, No. 2, 304–308 (1971).Google Scholar
  4. 4.
    G. F. Dvorko, E. A. Ponomareva, and E. I. Zaika, “Reactions of substituted triphenylverdazyls with monochloroacetic acid,” Zh. Org. Khim., 8, No. 9, 1925–1929 (1972).Google Scholar
  5. 5.
    D. H. Solomon and D. G. Hawthorne, “Reaction of 2,2-diphenyl-1-picrylhydrazyl with minerals,” J. Macromol. Sci. Chem., 5, No. 3, 573–584 (1971).Google Scholar
  6. 6.
    D. H. Solomon and J. D. Swift, “Reaction of α,α-diphenyl-β-picrylhydrazyl with acids,” J. Polym. Sci. A, 3, No. 9, 3107–3116 (1965).Google Scholar
  7. 7.
    J. A. Pople, D. P. Santry, and G. A. Segal, “Approximate self-consistent molecular orbital theory. 1. Invariant procedures,” J. Chem. Phys., 43, No. 10 (Pt. 2), 129–135 (1965).Google Scholar
  8. 8.
    R. C. Bingham, M. J. S. Dewar, and D. H. Lo, “Ground states of molecules. 25. MINDO/3. An improved version of the MINDO semiempirical SCF-MO method,” J. Am. Chem. Soc., 97, No. 6, 1285–1293 (1975).Google Scholar
  9. 9.
    P. Andersen, “An electron diffraction investigation of the free radical triphenylmethyl in the gas phase,” Acta Chem. Scand., 19, No. 3, 629–637 (1965).Google Scholar
  10. 10.
    D. E. Williams, “Structure of 3,4-dihydro-2,4-triphenyl-s-tetrazine-1(2H)-yl free radical by crystal-packing analysis and x-ray diffraction,” J. Am. Chem. Soc., 91, No. 5, 1243–1245 (1969).Google Scholar
  11. 11.
    L. J. Berlina, “Refinement and location of the hydrogen atoms in the nitroxide 2,2,6,6-tetramethyl-4-piperidin-1-oxyl,” Acta Crystallogr. B, 26, No. 6, 1198–1201 (1970).Google Scholar
  12. 12.
    L. E. Sutton (editor), Tables of Interatomic Distances and Configuration in Molecules and Ions, Chemical Society, London (1958).Google Scholar
  13. 13.
    H. Ishikawa and M. Ogata, “Ionization potentials of radicals as determined by unrestricted MINDO/2 method,” Bull. Chem. Soc. Jpn., 47., No. 10, 2591–2592 (1974).Google Scholar
  14. 14.
    P. Bischof, “Unrestricted open-shell calculation by MINDO/3. Geometries and electronic structure of radicals,” J. Am. Chem. Soc., 98, No. 22, 6844–6849 (1976).Google Scholar
  15. 15.
    W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, “Molecular orbital theory of the electronic structure of organic compounts. 10. A systematic study of geometries and energies of AHn molecules and cations,” J. Am. Chem. Soc., 93, No. 24, 6377–6387 (1971).Google Scholar
  16. 16.
    V. N. Kondrat'ev (editor), Dissociation Energies of Chemical Bonds. Ionization Potentials and Electron Affinity [in Russian], Nauka, Moscow (1974).Google Scholar
  17. 17.
    S. J. Danlavey, J. M. Dyke, N. Jonathan and A. Mossis, “Vacuum ultraviolet photoelectron spectroscopy of transient species. The NH2(X2B1) radical,” Mol. Phys., 39, No. 5, 1121–1135 (1980).Google Scholar
  18. 18.
    R. E. Kari and I. G. Csismadia, “A systematic study of the ionization potentials and electron, proton, hydrogen, and hydride affinities of 0Hn molecules and ions,”J. Am. Chem. Soc., 99, No. 14, 4539–4545 (1977).Google Scholar
  19. 19.
    A. L. Buchachenko and O. P. Sukhanova, “Hydrogen bonds and π complexes in radical liquid-phase reactions,” Usp. Khim., 36, No. 3, 475–493 (1967).Google Scholar
  20. 20.
    W. F. Reynolds, P. G. Mezey, W. J. Hehre, et al., “The relationship between substituent effects on energy and on charge from ab initio molecular orbital theory,” J. Am. Chem. Soc, 99, No. 17, 5821–5822 (1977).Google Scholar
  21. 21.
    J. E. Del Bene, “A molecular orbital study of protonation. 3. Equilibrium structures and energies of ions RCH0H+,” J. Am. Chem. Soc., 100, No. 6, 1673–1679 (1978).Google Scholar
  22. 22.
    V. D. Pokhodenko, A. A. Beloded, and V. G. Koshechko, Oxidation-Reduction Reactions of Free Radicals [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  23. 23.
    G. V. Karachevtsev and V. V. Savkin, “Investigation of the correlation between proton affinity and ionization potential of molecules,” Zh. Fiz. Khim., 56, No. 8, 1983–1986 (1982).Google Scholar
  24. 24.
    O. M. Polumbrik and E. I. Zaika, “Mechanism of reaction of verdazyl radicals with protic acids. Effect of medium and substituent. 1. OH acids,” Reakts. Sposobn. Org. Soedin., 14, No. 3/51, 389–401 (1977).Google Scholar
  25. 25.
    G. A. Abakumov and V. D. Tikhonov, “Reactions of stable 2,2,6,6-tetramethyl-4-piperidon-1-oxyl radical with acids,” Izv. Akad. Nauk SSSR, Ser. Khim., 1969, No. 4, 796–801.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • L. S. Degtyarev
    • 1
  • A. A. Stetsenko
    • 1
  1. 1.L. V. Pisarzhevskii Institute of Physical ChemistryAcademy of Sciences of the Ukrainian SSRKiev

Personalised recommendations