Skip to main content
Log in

On thermodynamic and kinetic characteristics applicable in evaluating the relative catalytic activity of oxides

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

The relation between heats of dissociation leading to the formation of lower oxide phases (q) and heats of dissociation without change in the oxide phase (qS) is analyzed. In the majority of cases qS is close to q; however, in the case of the higher oxides of V, Mo, W, and U, the difference qS-q is large. This leads to the systematic elimination of these oxides from the relationship correlating catalytic activity and q. The possibility is considered of using a kinetic characteristic (for example, reducibility) in evaluating the stability of the bond of the surface oxygen in oxides.

The principal limitation to the application of the thermodynamic method of predicting the catalytic activity of substances is formulated. This is the fact that it is useful only for evaluating the relative activity in a series of monotypic catalysts for the same reaction. The transition metals and oxides are established as not being monotypic catalysts for the oxidation of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Golodets and V. A. Roiter, Ukr. khim. zhurn., 29, 667, 1963.

    Google Scholar 

  2. V. A. Roiter and G. I. Golodets, Problems in Kinetics and Catalysis, XI (The Scientific Basis of Catalyst Selection) [in Russian], Nauka, Moscow, p. 56, 1966.

    Google Scholar 

  3. G. K. Boreskov, Problems in Kinetics and Catalysis, XI (The Scientific Basis of Catalyst Selection) [in Russian], Nauka, Moscow, p. 45, 1966.

    Google Scholar 

  4. V. I. Vedeneev, L. V. Gurvich, V. N. Kondrat'ev, V. A. Medvedev, and E. L. Frankevich, Dissociation Energies of Chemical Bonds, Ionization Potentials, and Electron Affinities [in Russian], Izd-vo AN SSSR, Moscow, 1962.

    Google Scholar 

  5. Ya. I. Gerasimov et al., Chemical Thermodynamics and Nonferrous Metallurgy [in Russian], Izd-vo tallurgizdat, Moscow, vol. 2, 1961.

    Google Scholar 

  6. Handbook of Chemistry and Physics, ed. C. D. Hodgman, Chemical Rubber Publ. Co., Cleveland, Ohio, p. 526, 1961.

    Google Scholar 

  7. Concise Chemical Encyclopedia [in Russian], vols. I–IV, Sovetskaya entsiklopediya, Moscow, 1961–1965.

  8. A. N. Zelikman, G. V. Samsonov, and O. E. Krein, Metallurgy of the Rare Elements [in Russian], Metallurgizdat, Moscow, 1964.

    Google Scholar 

  9. N. V. Kul'kova and M. I. Temkin, ZhFKh, 31, 2017, 1957.

    Google Scholar 

  10. F. D. Rossini et al., Selected Values of Chemical Thermodynamic Properties, Circ. Nat. Bur. Stand., p. 500, 1952.

  11. M. Kh. Karapet'yants and M. L. Karapet'yants, “Tables of some thermodynamic properties of various substances,” Tr. MKhTI im D.I. Mendeleeva, Moscow, no. 34, 1961.

    Google Scholar 

  12. V. E. Ostrovskii and N. N. Dobrovol'skii, DAN SSSR, 172, 649, 1967.

    Google Scholar 

  13. S. L. Kiperman, Izv. AN SSSR OKhN, 1129, 1957.

  14. N. V. Kul'kova and M. I. Temkin, ZhFKh, 36, 1731, 1962.

    Google Scholar 

  15. G. De Maria, R. P. Burns, J. Drowart, and M. G. Inghram, J. Chem. Phys., 32, 1373, 1960.

    Google Scholar 

  16. A. V. Gershingorina, V. M. Belousov, M. Ya. Rubanik, and Zh. F. Buteiko, collection: Catalysis and Catalysts [in Russian], vol. 3, Naukova Dumka, Kiev, p. 36, 1967.

    Google Scholar 

  17. G. I. Golodets, TEKh [Theoretical and Experimental Chemistry], 1, 755, 1965.

    Google Scholar 

  18. W. M. H. Sachtler and N. H. de Boer, Proc. 3-rd Internat. Congress on Catalysis, North-Holland Publ. Co., Amsterdam, vol. 1, p. 252, 1965.

    Google Scholar 

  19. A. N. Kuznetsov. The Physicochemical Basis of Pig Iron Production [in Russian], Metallurgizdat, Moscow, p. 80, 1956.

    Google Scholar 

  20. F. Glaser, Z. anorg. Chem., 36, 1, 1903.

    Google Scholar 

  21. G. K. Boreskov, Adv. in Catalysis, 15, 285, 1964.

    Google Scholar 

  22. V. A. Komarov, ZhFKh, 27, 1748, 1953.

    Google Scholar 

  23. N. I. Il'chenko and V. A. Yuza, collection: Catalysis and Catalysts [in Russian], Naukova Dumka, Kiev, vol. 2, p. 118, 1966.

    Google Scholar 

  24. A. A. Balandin, The Multiplet Theory of Catalysis [in Russian], Izd-vo. MGU, Moscow, pt. 2, 1964.

    Google Scholar 

  25. M. I. Temkin, ZhFKh, 31, 3, 1957.

    Google Scholar 

  26. S. L. Kiperman, Introduction to the Kinetics of Heterogeneous Catalytic Reactions [in Russian], Nauka, Moscow, 1964.

    Google Scholar 

  27. G. I. Golodets, collection: Catalysis and Catalysts [in Russian], Naukova Dumka, Kiev, vol. 2, p. 25, 1966.

    Google Scholar 

  28. V. V. Popovskii and G. K. Boreskov, Problemy kinetiki i kataliza, 10, 67, 1960.

    Google Scholar 

  29. V. V. Popovskii, G. K. Boreskov, and V. S. Muzykantov, ZhFKh, 35, 192, 1961.

    Google Scholar 

  30. E. N. Khar'kovskaya, G. K. Boreskov, and M. G. Slin'ko, DAN SSSR, 127, 145, 1959.

    Google Scholar 

  31. G. K. Boreskov, M. G. Slin'ko, A. G. Filippova, and R. N. Gur'yanova, DAN SSSR, 94, 713, 1954; G. K. Boreskov, ZhFKh, 31, 937, 1957.

    Google Scholar 

  32. A. Clark, Ind. Engng. Chem., 45, 1476, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golodets, G.I., Pyatnitskii, Y.I. & Goncharuk, V.V. On thermodynamic and kinetic characteristics applicable in evaluating the relative catalytic activity of oxides. Theor Exp Chem 4, 31–35 (1970). https://doi.org/10.1007/BF00525943

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00525943

Keywords

Navigation