Advertisement

Zeitschrift für Krebsforschung

, Volume 72, Issue 4, pp 350–355 | Cite as

Uptake of 51Cr-β-glycerophosphate by experimental brain tumor

  • Leopoldo J. Anghileri
Article
  • 18 Downloads

Summary

A new radioactive compound the 51Cr-β-glycerophosphate complex, which accumulates in different types of tumor, has been assayed in mice transplanted subcutaneously with brain tumor. A very high tumor to brain uptake ratio was observed throughout the experiment (72 h). The optimal interval seemed to be between 6 and 24 h. The biochemical mechanism involved in the accumulation of the compound by the Tumor appeared to be more complex than a simple phosphomonoesterase action.

Keywords

Public Health Cancer Research Brain Tumor High Tumor Biochemical Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Aufnahme von 51Cr-B-Glycerophosphat von experimentell-induzierten Hirntumoren

Zusammenfassung

Eine neue radioaktive Verbindung, der 51Cr-B-glycerophosphat-Komplex, welches in verschiedenen Typen von Tumoren gespeichert wird, wurde in Mäusen, die subkutane Hirntumoren trugen, biologisch ausgewertet. Während der ganzen Untersuchungszeit von 72 Std speicherte der Tumor, wenn mit Hirn verglichen, viel mehr Radioaktivität auf. Die optimale Zeit war offensichtlich zwischen 6–24 Std. Der biochemische Mechanismus der Verabreichung der Verbindung durch den Tumor erschien komplizierter zu sein als eine einfache Wirkung von Phosphomonoesterase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Long, R. G., J. G. McAfee, and J. Winkelman: Evaluation of radioactive compounds for the external detection of cerebral tumors. Cancer Res. 23, 98–108 (1963).Google Scholar
  2. 2.
    Matthews, C. M. E., and G. Molinaro: A study of the relative value of radioactive substances used for brain tumor localization and of the mechanism of tumor: brain concentration. Brit. J. exp. Path. 44, 260–277 (1963).Google Scholar
  3. 3.
    Finney, J. W., G. A. Balla, R. E. Collier, J. Wakley, H. C. Urschel, and J. T. Mallams: Differential localization of isotopes in tumors through the use of intraarterial hydrogen peroxide. Amer. J. Roentgenol. 94, 783–791 (1965).Google Scholar
  4. 4.
    Soloway, A. H., S. Aronow, C. Kaufman, J. F. Balcius, B. Whitman, and J. R. Messer: Penetration of brain and brain tumor. VI. Radioactive scanning agents. J. nucl. Med. 8, 792–799 (1967).Google Scholar
  5. 5.
    McAfee, J. G., C. F. Feuger, H. S. Stern, H. N. R. Wagner, and T. Migita: 90mTc pertechnetate for brain scanning. J. nucl. Med. 5, 811–827 (1964).Google Scholar
  6. 6.
    Sodee, D. B., R. R. Renner, and B. Di Stefano: Photoscanning localization of tumor utilizing chlormedrodrin mercury-197. Radiology 84, 873–876 (1965).Google Scholar
  7. 7.
    McGready, V. R.: Clinical radioisotope scanning. Brit. J. Radiol. 40, 401–423 (1967).Google Scholar
  8. 8.
    Selverstone, B., W. H. Sweet, and C. V. Robinson: The clinical use of radioactive phosphorus in the surgery of brain tumors. Ann. Surg. 130, 643–650 (1949).Google Scholar
  9. 9.
    Cramer, H., u. H. W. Pabst: Tumordiagnostik mit radioaktiven Isotopen — Bericht über 300 mit P32 untersuchten Patienten. Z. Krebsforsch. 58, 163–168 (1952).Google Scholar
  10. 10.
    Anghileri, L. J.: Localization of 51Cr-chromic glycerophosphate in Yoshida rat sarcoma. Invest. Radiol. 2, 394–395 (1967).Google Scholar
  11. 11.
    Anghileri, L. J.: Uptake of 51Cr-β-glycerophosphate by Ehrlich ascites cells. Naturwissenschaften 55, 136–137 (1968).Google Scholar
  12. 12.
    Anghileri, L. J.: The uptake of 51Cr-β-glycerophosphate by Yoshida tumors. Oncology 21, 275–282 (1967).Google Scholar
  13. 13.
    Warburg, O.: On the origin of cancer cells, Science 123, 309–310 (1956).Google Scholar
  14. 14.
    Groth, D. P., G. A. le Page, C. Heidelberger, and P. A. Stoesz: Metabolism of pyruvate in tumor homogenates. Cancer Res. 12, 529–534 (1952).Google Scholar
  15. 15.
    Boxer, G. E., and C. E. Shonk: Low levels of soluble DPN-linked α-glycerophosphate dehydrogenase in tumors. Cancer Res. 20, 85–91 (1960).Google Scholar
  16. 16.
    Anghileri, L. J.: Studies on the uptake of 51Cr and 54Cu β-glycerophosphate complexes by tumors. Nuklear-Medizin 7, 266–278 (1968).Google Scholar
  17. 17.
    Soloway, A. H., B. Whitman, and J. R. Messer: Penetration of brain and brain tumors by aromatic compounds as a function of molecular substituents. III. J. Med. Pharm. Chem. 5, 191–196 (1962).Google Scholar
  18. 18.
    Soloway, A. H., E. Nyilas, R. N. Kjellberg, and V. H. Mark: Penetration of brain and brain tumors by intravascular injection of alkylating agents. IV. J. Med. Pharm. Chem. 5, 1371–1376 (1962).Google Scholar
  19. 19.
    Shinowara, G. F., L. M. Jones, and H. L. Reinhart: The estimation of serum inorganic phosphate and “acid” and “alkaline” phosphatase activity. J. biol. Chem. 142, 921–926 (1942).Google Scholar
  20. 20.
    Anghileri, L. J.: Cation exchange properties of bone tissue. Experimentia (Basel) 25, 283 (1969).Google Scholar
  21. 21.
    Greenstein, J. P.: In: Biochemistry of Cancer, pp. 394–405 New York: Academic Press, 1954.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Leopoldo J. Anghileri
    • 1
    • 2
  1. 1.Johns Hopkins Medical Institutions Department of Radiological Science Baltimore
  2. 2.University of Colorado Medical CenterDenver

Personalised recommendations