Theoretical and Experimental Chemistry

, Volume 5, Issue 1, pp 69–74 | Cite as

Photoactivation of aromatic molecules on the surface of magnesium oxide

  • A. A. Pankratov
  • I. M. Prudnikov
Article
  • 21 Downloads

Abstract

The influence of ultraviolet radiation on the state of molecules of aromatic hydrocarbons adsorbed from the gaseous phase onto magnesium oxide has been studied from the electronic absorption spectra (in diffuse reflected light) and electron paramagnetic resonance. Depending on the temperature of the preliminary vacuum treatment of the polycrystalline magnesium oxide, at least three types of molecular photoproducts were observed: paramagnetic products (for 600‡ C), nonparamagnetic products (for 400 and 900‡ C), and products identified as singly-charged radical-anions, converted into negative dimers in an excess of the hydrocarbon. A bathochromic shift of the absorption band maxima of the radical-anions is observed in the series BeO, MgO, CaO, and BaO. The mechanism of the photoformation of molecular ions and the nature of the surface defects on magnesium oxide are discussed.

Keywords

Hydrocarbon Gaseous Phase Electron Paramagnetic Resonance Aromatic Hydrocarbon Electronic Absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Lunsford, J. Phys. Chem., 68, 2312, 1964.Google Scholar
  2. 2.
    A. A. Lisachenko and F. I. Vilesov, Vestn. LGU, 10, 30, 1966.Google Scholar
  3. 3.
    J. H. Lunsford and J. P. Jayne, J. Phys. Chem., 69, 2182, 1965.Google Scholar
  4. 4.
    J. H. Lunsford and J. P. Jayne, J. Chem. Phys., 44, 1487, 1966.Google Scholar
  5. 5.
    P. Balk, G. J. HoŸtink, and J. W. Schreurs, Rec. Trav. chim., 76, 813, 1957.Google Scholar
  6. 6.
    A. Matthias and E. Warhurst, Trans. Far. Soc., 58, 948, 1962.Google Scholar
  7. 7.
    J.-P, Pascault, M. Bartagonon-Weisrock, and J. Gole, C. r. Acad. Sci. C264, 220, 1967.Google Scholar
  8. 8.
    P. Benname, G. J. Hoijtink, J. H. Lupinsky, L. J. Osterhoff, P. Selier, and I. D. W. VanVoorst, Mol. Phys., 2, 431, 1959.Google Scholar
  9. 9.
    A. Terenin, Ach. in catalysis, 15, 227, 1964.Google Scholar
  10. 10.
    J. B. Gallivan and W. H. Hamill, J. Chem. Phys., 44, 2378, 1966.Google Scholar
  11. 11.
    C. L. Gardner, J. Chem. Phys., 45, 572, 1966.Google Scholar
  12. 12.
    A. Ishitani and S. Nagakura, Mol. Phys., 12, 1, 1967.Google Scholar
  13. 13.
    T. R. Tuttle and S. Weismann, J. Am. Chem. Soc., 80, 5342, 1958.Google Scholar
  14. 14.
    O. Edlund, P. Kinell, A. Lund and A. Shimizu, J. Chem. Phys., 46, 9, 3679, 1967.Google Scholar
  15. 15.
    K. H. J. Buschow, J. Dieleman, and G. J. Hoijtink, Mol. Phys., 7, 1, 1963–1964.Google Scholar
  16. 16.
    C. Reid, J. Am. Chem. Soc., 76, 3264, 1954.Google Scholar
  17. 17.
    J. H. Lunsford and J. P. Jayne, J. Phys. Chem., 70, 3464, 1966.Google Scholar
  18. 18.
    H. V. Carter, B. J. McClelland, and E. Warhurst, Trans. Far. Soc., 56, 455, 1960.Google Scholar
  19. 19.
    S. Malinowski, S. Szczepauska, and J. Sloczynski, J. Catalysis, 7, 67, 1967.Google Scholar
  20. 20.
    R. Wilson, Can. J. Chem., 44, 5, 551, 1966.Google Scholar
  21. 21.
    O. V. Krylov, Z. A. Markova, I. I. Tret'yakov, and E. A. Fokina, Kinetika i kataliz, 6, 128, 1965.Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • A. A. Pankratov
    • 1
  • I. M. Prudnikov
    • 1
  1. 1.Physics Scientific-Research InstituteLeningrad State UniversityUSSR

Personalised recommendations