Advertisement

Zeitschrift für Krebsforschung

, Volume 63, Issue 3, pp 236–248 | Cite as

Über die Abhängigkeit des Sauerstoffverbrauches von Ehrlich-Ascites-Carcinomzellen von der Oxydation der Glucose über den Hexose-Monophosphat-Shunt

Untersuchungen zur Frage des Reaktionsmechanismus des “Crabtree-Effektes”
  • F. Seelich
  • K. Letnansky
Article

Zusammenfassung

Es wurde der Sauerstoffverbrauch von Ehrlich-Ascites-Carcinomzellen in Abhängigkeit vom Gehalt des Suspensionsmediums an Glucose, Pyruvat, Bicarbonat, Phosphat, Monojodacetat, Malonat und Dinitrophenol ermittelt. Die betreffenden Befunde sowie auch die entsprechenden Werte für den Glucoseumsatz, die Bildung von Milchsäure und von Hexosephosphaten ermöglichten unter Einbeziehung der Ergebnisse anderer Autoren die Aufstellung eines Reaktionsschemas, in dem der maßgebende Faktor bei der Hemmung des Sauerstoffverbrauches durch Glucosezusatz die Hydrierung von TPN ist. Die Abhängigkeit des Crabtree-Effektes von der Glucosekonzentration und vom Phosphatgehalt des Mediums ergibt sich als Folge der von diesen Faktoren abhängigen Umsatzrate der Glucose über den hexosemonophosphat-Shunt.

Summary

The oxygen consumption of Ehrlich ascites tumor cells has been measured in relation to the content of various substances (glucose, pyruvate, hydrogencarbonate, phosphate, monoiodoacetate, malonate, and dinitrophenol) added to the suspension medium. The results, the findings on the glucose turnover, the formation of lactic acid and of hexosephosphates, as well as the results of other authors made it possible to elaborate a scheme of reaction, in which the reduction of TPN is the determinating factor in the inhibition of oxygen consumption by addition of glucose. The dependence of the Crabtree effect on the glucose concentration and phosphate content of the medium occurs as a result of the turnover rate of glucose via the hexosemonophosphate pathway.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ács, G., T. Garzó, G. Grosz, J. Molnár, O. Stephaneck u. F. B. Straub: Eine Erklärung des Fehlens des Pasteur-Effektes bei den Ehrlichschen Ascites-Karzinomzellen. Acta physiol. Acad. Sci. hung. 8, 269 (1955).Google Scholar
  2. Allen, A., B. Friedmann and S. Weinhouse: Tissue preference for fatty acid and glucose oxidation. J. biol. Chem. 212, 921 (1955).PubMedGoogle Scholar
  3. Barker, S. B., and W. H. Summerson: The colorimetric determination of lactic acid in biological material. J. biol. Chem. 138, 535 (1941).Google Scholar
  4. Bloch-Frankenthal, L., and S. Weinhouse: Metabolism of neoplastic tissue. XII. Effects of glucose concentration on respiration and glycolysis of ascites tumor cells. Cancer Res. 17, 1082 (1957).PubMedGoogle Scholar
  5. Crabtree, H. G.: Observations on the carbohydrate metabolism of tumors. Biochem. J. 23, 536 (1929).Google Scholar
  6. Danes, S. B., and J. Kieler: The influence of CO2 tension on cellular respiration studied by the cartesian diver technique. C. R. Lab. Carlsberg, Ser. chim. 31, 61 (1958).Google Scholar
  7. El'tsina, N. V., u. I. F. Seits: Oxydative und glykolytische Phosphorylierung in Krebszellen. Dokl. Akad. Nauk USSR. 77, 653 (1951).Google Scholar
  8. Emmelot, P., and G. H. van Vals: The metabolism of neoplastic tissues: the interrelationship between oxidative and glycolytic mechanisms in ascites tumour cells. Brit. J. Cancer 11, 620 (1957).PubMedGoogle Scholar
  9. Fillerup, D. L., J. C. Migliore and J. F. Mead: The uptake of lipoproteins by ascites tumor cells. The fatty acid-albumin complex. J. biol. Chem. 233, 98 (1958).PubMedGoogle Scholar
  10. Gibson, D. M., E. B. Titchener and S. J. Wakil: Studies on the mechanism of fatty acid synthesis. V. Bicarbonate requirement for the synthesis of long-chain fatty acids. Biochim. biophys. Acta 30, 376 (1958).PubMedGoogle Scholar
  11. Ibsen, K. H., E. L. Coe and R. W. McKee: Energy compensation in the Crabtree effect with Ehrlich ascites carcinoma cells. Nature (Lond.) 183, 1471 (1959).Google Scholar
  12. Keller, H.: Über den einfluß von Hydrogenkarbonat auf die Glykolyse von Hirnsuspensionen. Hoppe-Seylers Z. physiol. Chem. 299, 93 (1955).PubMedGoogle Scholar
  13. Kun, E., P. Talalay and H. G. Williams-Ashman: Studies on the Ehrlich ascites tumor. I. The enzymic and metabolic activities of the ascitic cells and the ascitic plasma. Cancer Res. 11, 855 (1951).PubMedGoogle Scholar
  14. Kunz, W., u. W. Schmid: Über Beziehungen zwischen Stoffwechselbeeinflussung und Wachstum beim Mäuse-Ascitestumor. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak. 225, 166 (1955).Google Scholar
  15. Kvamme, E.: (1) Glycolysis and respiration in Ehrlich ascites tumour cells. II. Effect of IAA and DNP. Acta physiol. scand. 42, 219 (1958).PubMedGoogle Scholar
  16. ——: (2) I. Phosphate metabolism in relation to glycolysis and the Crabtree effect. Acta physiol. scand. 42, 204 (1958).PubMedGoogle Scholar
  17. ——: (3) IV. Pasteur effect, malonate Pasteur effect and Crabtree effect. Acta physiol. scand. 42, 239 (1958).PubMedGoogle Scholar
  18. Langdon, R. G.: The requirement of triphosphoryridin nucleotid in fatty acid synthesis. J. Amer. chem. Soc. 77, 5190 (1955).Google Scholar
  19. —— The biosynthesis of fatty acids in rat liver. J. biol. Chem. 226, 615 (1957).PubMedGoogle Scholar
  20. McKee, R. W., K. Lonberg-Holm and J. A. Jehl: Substrate utilization by Ehrlich mouse ascites carcinoma cells. Cancer Res. 13, 537 (1953).PubMedGoogle Scholar
  21. McLean, P.: Carbohydrate metabolism of mammary tissue. I. Pathways of glucose catabolism in the mammary gland. Biochim. biophys. Acta 30, 303 (1958).PubMedGoogle Scholar
  22. Medes, G., and S. Weinhouse: Metabolism of neoplastic tissue. XIII. Substrate competition in fatty acid oxydation in ascites tumor cells. Cancer Res. 18, 352 (1958).PubMedGoogle Scholar
  23. Nirenberg, M. W.: An enzymic defect in ascites-tumor cells. Biochim. biophys. Acta 30, 203 (1958).PubMedGoogle Scholar
  24. Pütter, J.: Der Einfluß verschiedener Cytostatica auf den Stoffwechsel des Ehrlich-Mäuse-Ascites-Carcinoms. Verh. der dtsch. Ges. für Pathologie, Nauheim 1957, 41. Tagg, S. 374.Google Scholar
  25. Racker, E.: Carbohydrate metabolism in ascites tumor cells. Ann. N. Y. Acad. Sci. 63, 1017 (1956).PubMedGoogle Scholar
  26. Rapoport, S., H. G. Schweiger u. H. Brandt: Zur Frage des endogenen Substrats und der Glukosehemmung der Atmung. Naturwiss. 44, 636 (1957).Google Scholar
  27. Roe, J. H.: A colorimetric method for the determination of fructose in blood and urine. J. biol. Chem. 107, 15 (1934).Google Scholar
  28. Seelich, F., u. K. Letnansky: Zur Frage der Phosphatabhängigkeit des Stoffwechsels von Tumorzellen. Naturwiss. 44, 450 (1957).Google Scholar
  29. Siperstein, M. D., and V. M. Fagan: Studies on the relationship between glucose oxidation and intermediary metabolism. I. The influence of glycolysis on the synthesis of cholesterol and fatty acid in normal liver. J. clin. Invest. 37, 1185 (1958).PubMedGoogle Scholar
  30. Šlechta, L., A. Jakubovič u. F. Sorm: Über den Metabolismus neoplastischer Gewebe. I. Der Glucosemetabolismus im Ehrlich-Ascitestumor. Coll. českosl. chem. Commun. 20, 863 (1955).Google Scholar
  31. Umbreit, W. W., R. H. Burris and J. F. Stauffer: Manometric techniques, 3. Aufl. Minneapolis: Burgess Publ. Co. 1957.Google Scholar
  32. Vals, G. H. van, and P. Emmelot: The metabolism of neoplastic tissues: The effect of some metabolic inhibitors on the synthesis of cholesterol and long-chain fatty acids by tumor tissues in vitro. Z. Krebsforsch. 62, 63 (1957).PubMedGoogle Scholar
  33. Vals, G. H. van, R. P. van Hoeven, L. Bosch and P. Emmelot: The metabolism of neoplastic tissues: Further studies on the hexosemonophosphate oxidative pathway. Brit. J. Canc. 12, 448 (1958).Google Scholar
  34. Weinhouse, S., A. Allen and R. H. Millington: Metabolism of neoplastic tissue. V. Fatty acid oxidation in slices of transplanted tumors. Cancer Res. 13, 367 (1953).PubMedGoogle Scholar
  35. Weinhouse, S., R. H. Millington and C. E. Wenner: Metabolism of neoplastic tissue. I. The oxidation of carbohydrate and fatty acids in transplanted tumors. Cancer Res. 11, 845 (1951).PubMedGoogle Scholar
  36. Wenner, C. E., J. Hackney and J. Herbert: Pathways of glucose metabolism in ascites cells. Proc. Amer. Ass. Cancer. Res. 2, 259 (1957).Google Scholar
  37. Wenner, C. E. J. Hackney and J. H. Moliterno: The hexose monophosphate shunt in glucose catabolism in ascites tumor cells. Cancer Res. 18, 1105 (1958).PubMedGoogle Scholar
  38. Wilson, J. D., and M. D. Siperstein: Studies on the relationship between glucose oxidation and intermediary metabolism. III. The influence of pyridine nucleotides on protein synthesis. J. clin. Invest. 38, 317 (1959).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1960

Authors and Affiliations

  • F. Seelich
    • 1
  • K. Letnansky
    • 1
  1. 1.Österreichischen Krebsforschungs-InstitutWien

Personalised recommendations