Chemistry of Heterocyclic Compounds

, Volume 22, Issue 7, pp 713–722 | Cite as

Mechanism of the Fischer indole synthesis. Quantum-chemical interpretation of the rearrangement of substituted cyclohexanone arylhydrazones to tetrahydrocarbazoles

  • Yu. B. Vysotskii
  • N. M. Przheval'skii
  • B. P. Zemskii
  • I. I. Grandberg
  • L. Yu. Kostromina


Calculations of a number of model structures within the scheme of the Fishcer indole synthesis were made on the basis of a bonding variant of perturbation theory in the self-consistent-field (SCF) MO LCAO method. A quantum-chemical interpretation of the effect of substituents on the course of the thermal process is given. The kinetics of the thermal and acid-catalyzed indolization of substituted cyclohexanone arylhydrazones to tetrahydrocarbazoles were studied by spectrophotometry. It was shown that the experimental data are in satisfactory agreement with the calculated values. It was concluded that a concerted mechanism (a [3,3]-sigmatropic shift) for the step involving the formation of a carbon-carbon bond in the Fischer reaction is preferred.


Experimental Data Organic Chemistry Perturbation Theory Indole Spectrophotometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    H. Robinson, Usp. Khim., 40, 1434 (1971).Google Scholar
  2. 2.
    Yu. P. Kitaev and T. V. Troepol'skaya, Khim. Geterotsikl. Soedin., No. 8, 1011 (1978).Google Scholar
  3. 3.
    I. I. Grandberg and V. I. Sorokin, Usp. Khim., 43, 266 (1974).Google Scholar
  4. 4.
    I. I. Grandberg, Zh. Org. Khim., 19, 2439 (1983).Google Scholar
  5. 5.
    B. Robinson, The Fischer Indole Synthesis, Wiley Interscience, New York (1982).Google Scholar
  6. 6.
    N. M. Przheval'skii, M. E. Kletskii, I. I. Grandberg, and L. Yu. Kostromina, Khim. Geterotsikl. Soedin., No. 6, 779 (1985).Google Scholar
  7. 7.
    H. Heimgartner, H. J. Hansen, and H. Schmid, in: Iminium Salts in Organic Chemistry, Wiley, New York (1979), p. 655.Google Scholar
  8. 8.
    A. W. Douglas, J. Am. Chem. Soc., 101, 5676 (1979).Google Scholar
  9. 9.
    A. W. Douglas, J. Am. Chem. Soc., 100, 6463 (1978).Google Scholar
  10. 10.
    G. L. Glish and R. G. Cooks, J. Am. Chem. Soc., 100, 6720 (1978).Google Scholar
  11. 11.
    N. M. Przheval'skii, L. Yu. Kostromina, and I. I. Grandberg, Khim. Geterotsikl. Soedin., No. 9, 1207 (1985).Google Scholar
  12. 12.
    M. M. Mestechkin, The Density-Matrix Method in Molecular Theory [in Russian], Naukova Dumka, Kiev (1977), p. 352.Google Scholar
  13. 13.
    Yu. B. Vysotskii and B. P. Zemskii, Khim. Geterotsikl. Soedin., No. 7, 984 (1980).Google Scholar
  14. 14.
    Yu. B. Vysotskii, B. P. Zemskii, T. V. Stupnikova, R. S. Sagitullin, A. N. Kost, and O. P. Shvaika, Khim. Geterotsikl. Soedin., No. 11, 1496 (1979).Google Scholar
  15. 15.
    Yu. B. Vysotskii, B. P. Zemskii, T. V. Stupnikova, V. N. Kalafat, R. S. Sagitullin, and V. P. Marshtupa, Khim. Geterotsikl. Soedin., No. 9, 1277 (1982).Google Scholar
  16. 16.
    M. V. Bazilevskii, The Molecular Orbital Method and the Reactivities of Organic Molecules [in Russian], Khimiya, Moscow (1969), p. 304.Google Scholar
  17. 17.
    S. Jolidon and H. J. Hansen, Helv. Chim. Acta, 60, 978 (1977).Google Scholar
  18. 18.
    P. Schiess and E. Sendi, Helv. Chim. Acta, 61, 1364 (1978).Google Scholar
  19. 19.
    R. N. Elgersma, “Einige aspekten van de indolsynthes volgens Fischer,” Dissertation, Rotterdam (1969).Google Scholar
  20. 20.
    K. H. Pausacker and C. I. Schubert, J. Chem. Soc., No. 7, 1814 (1950).Google Scholar
  21. 21.
    S. McLean and R. I. Reed, J. Chem. Soc., Part 3, 2519 (1955).Google Scholar
  22. 22.
    H. Ishii, Acc. Chem. Res., 14, 275 (1981).Google Scholar
  23. 23.
    Khim. Geterotsikl. Soedin., No. 1, 58 (1971).Google Scholar
  24. 24.
    H. Albrecht, Tetrahedron Lett., 545 (1971).Google Scholar
  25. 25.
    B. A. Shainyan and A. N. Mirskova, Usp. Khim., 48, 201 (1979).Google Scholar
  26. 26.
    Houben-Weyl, Methoden der organischen Chemie, Vol. 4, Book 1, Georg Thieme Verlag, Stuttgart.Google Scholar
  27. 27.
    D. Biggs and W. D. H. Lyn, J. Chem. Soc., Perkin 2, No. 6, 691 (1976).Google Scholar
  28. 28.
    H. Decker and P. Becker, Ann. Chem., No. 395, 362 (1913).Google Scholar
  29. 29.
    F. D. Chattaway and K. J. P. Orton, J. Chem. Soc., Part 1, No. 79, 461 (1901).Google Scholar
  30. 30.
    R. O. Matevosyan, N. Ya. Postovskii, and A. K. Chirkov, Zh. Obshch. Khim., 29, 858 (1959).Google Scholar
  31. 31.
    I. I. Grandberg and S. N. Dashkevich, Khim. Geterotsikl. Soedin., No. 3, 342 (1971).Google Scholar
  32. 32.
    F. Koch, Ber., No. 20, 2460 (1887).Google Scholar
  33. 33.
    A. N. Frolov, O. V. Kul'bitskaya, and A. V. El'tsov, Zh. Org. Khim., 15, 2118 (1979).Google Scholar
  34. 34.
    J. D. Entwistle, R. A. W. Johnstone, and A. H. Wilby, Tetrahedron, 38, 419 (1982).Google Scholar
  35. 35.
    A. Charrier, Gazz. Chim. Ital., No. 461, 367 (1916).Google Scholar
  36. 36.
    K. H. Bloss and C. E. Timberlake, J. Org. Chem., 28, 267 (1963).Google Scholar
  37. 37.
    E. Campaigne and R. D. Lake, J. Org. Chem., 24, 479 (1959).Google Scholar
  38. 38.
    V. F. Martynov, Zh. Obshch. Khim., 27, 1191 (1957).Google Scholar
  39. 39.
    N. M. Przheval'skii, I. I. Grandberg, N. A. Klyuev, and A. B. Belikov, Khim. Geterotsikl. Soedin., No. 10, 1349 (1978).Google Scholar
  40. 40.
    N. Campbell and E. B. McCall, J. Chem. Soc., No. 10, 2870 (1950).Google Scholar
  41. 41.
    N. A. Jones and M. L. Tomlinson, J. Chem. Soc., Part 4, 4114 (1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Yu. B. Vysotskii
    • 1
  • N. M. Przheval'skii
    • 1
  • B. P. Zemskii
    • 1
  • I. I. Grandberg
    • 1
  • L. Yu. Kostromina
    • 1
  1. 1.K. A. Timiryazev Moscow Agricultural AcademyMoscow

Personalised recommendations