Skip to main content
Log in

An improved parametric crossover model for the thermodynamic properties of fluids in the critical region

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An improved parametric equation for the thermodynamic properties of fluids is presented that incorporates the crossover from singular thermodynamic behavior in the immediate vicinity of the critical point to regular thermodynamic behavior far away from the critical point. Based on a comparison with experimental data for ethane and methane, it is demonstrated that the crossover model is capable of representing the thermodynamic properties of fluids in a large range of temperatures and densities around the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Sengers and J. M. H. Levelt Sengers, Amu. Rev. Chem. 37:189 (1986).

    Google Scholar 

  2. M. A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, Philadelphia, 1991).

    Google Scholar 

  3. J. V. Sengers and J. M. H. Levelt Sengers, in Progress in Liquid Physics, C. A. Croxton, ed. (Wiley, New York, 1978), p. 103.

    Google Scholar 

  4. M. A. Anisimov and S. B. Kiselev, Sov. Tech. Rev. B Therm. Phys. 3(2):1 (1992).

    Google Scholar 

  5. P. Schofield, J. D. Litster, and J. T. Ho, Phys. Rev. Lett. 23:1098 (1969).

    Google Scholar 

  6. J. M. H. Levelt Sengers and J. V. Sengers, in Perspectives in Statistical Physics, H. J. Raveché, ed. (North-Holland, Amsterdam, 1981), p. 239.

    Google Scholar 

  7. F. W. Balfour, J. V. Sengers, M. R. Moldover, and J. M. H. Levelt Sengers, Phys. Lett. A 65:223 (1978).

    Google Scholar 

  8. J. V. Sengers and J. M. H. Levelt Sengers, Int. J. Thermophys. 5:195 (1984).

    Google Scholar 

  9. S. B. Kiselev, High Temp. 24:375 (1985).

    Google Scholar 

  10. M. A. Anisimov, S. B. Kiselev, and I. G. Kostyukova, Int. J. Thermophys. 6:465 (1985).

    Google Scholar 

  11. J. M. H. Levelt Sengers, B. Kamgar-Parsi, F. W. Balfour, and J. V. Sengers, J. Phys. Chem. Ref. Data 12:1 (1983).

    Google Scholar 

  12. B. Kamgar-Parsi, J. M. H. Levelt Sengers, and J. V. Sengers, J. Phys. Chem. Ref. Data 12:513 (1983).

    Google Scholar 

  13. Kh. S. Abdulkadirova, S. B. Kiselev, I. G. Kostyukova, and L. V. Fedyunina, J. Eng. Phys. 61:902 (1991).

    Google Scholar 

  14. A. G. Aizpiri, A. Rey, J. Dávila, R. G. Rubio, J. A. Zollweg, and W. B. Streett, J. Phys. Chem. 95:3351 (1991).

    Google Scholar 

  15. Z. Y. Chen, A. Abbaci, S. Tang, and J. V. Sengers, Phys. Rev. A 42:4470 (1990).

    Google Scholar 

  16. M. A. Anisimov, S. B. Kiselev, J. V. Sengers, and S. Tang, Physica A 188:487 (1992).

    Google Scholar 

  17. J. Luettmer-Strathmann, S. Tang, and J. V. Sengers, J. Chem. Phys. 97:2705 (1992).

    Google Scholar 

  18. J. F. Nicoll, Phys. Rev. A 24:2203 (1981).

    Google Scholar 

  19. P. C. Albright, J. V. Sengers, J. F. Nicoll, and M. Ley-Koo, Int. J. Thermophys. 7:75 (1986).

    Google Scholar 

  20. Z. Y. Chen, P. C. Albright, and J. V. Sengers, Phys. Rev. A 41:3161 (1990).

    Google Scholar 

  21. S. B. Kiselev, High Temp. 28:42 (1988).

    Google Scholar 

  22. S. B. Kiselev, I. G. Kostyukova, and A. A. Povodyrev, Int. J. Thermophys. 12:877 (1991).

    Google Scholar 

  23. F. J. Wegner, Phys. Rev. B 5:4529 (1972).

    Google Scholar 

  24. M. Ley-Koo and M. S. Green, Phys. Rev. B 23:3650 (1981).

    Google Scholar 

  25. A. J. Liu and M. E. Fisher, Physica A 156:35 (1989).

    Google Scholar 

  26. S. Tang, J. V. Sengers, and Z. Y. Chen, Physica A 179:344 (1991).

    Google Scholar 

  27. D. S. Kurumov and B. A. Grigoryev, Int. J. Thermophys. 12:549 (1991).

    Google Scholar 

  28. D. J. Wallance and R. K. P. Zia, J. Phys. C 7:3480 (1974).

    Google Scholar 

  29. A. T. Berestov, Sov. Phys. JETP 45:184 (1977).

    Google Scholar 

  30. J. Souletie, H. Martin, and C. Tsallis, Europhys. Lett. 2:2360 (1981).

    Google Scholar 

  31. E. Carré and J. Souletie, J. Magnet. Magnet Mater. 72:29 (1988).

    Google Scholar 

  32. F. C. Zhang and R. K. P. Zia, J. Phys. A 15:3303 (1982).

    Google Scholar 

  33. K. E. Neuman and E. K. Riedel, Phys. Rev. B 30:6615 (1984).

    Google Scholar 

  34. F. C. Zhang, Ph.D. thesis (Department of Physics, Virginia Polytechnic Institute, Blacksburg, 1983).

    Google Scholar 

  35. G. X. Jin, S. Tang, and J. V. Sengers, in press.

  36. G. X. Jin, S. Tang, and J. V. Sengers, Int. J. Thermophys. 13:671 (1992).

    Google Scholar 

  37. H. Preston-Thomas, Metrologia 27:3 (1992).

    Google Scholar 

  38. D. R. Douslin and R. H. Harrison, J. Chem. Thermodynam. 5:491 (1973).

    Google Scholar 

  39. R. Kleinrahm and W. Wagner, J. Chem. Thermodynam. 18:739 (1986).

    Google Scholar 

  40. R. Kleinrahm, W. Duschek, and W. Wagner, J. Chem. Thermodynam. 18:1103 (1986).

    Google Scholar 

  41. G. Händel, R. Kleinrahm, and W. Wagner, J. Chem. Thermodynam. 24:685 (1992).

    Google Scholar 

  42. N. J. Trappeniers, T. Wassenaar, and J. C. Abels, Physica A 98:289 (1979); Erratum, Physica A 100:660 (1980).

    Google Scholar 

  43. U. Setzmann and W. Wagner, J. Phys. Chem. Ref. Data 20:1061 (1991).

    Google Scholar 

  44. N. G. Shmakov, Teplofiz. Svoistva Verhchestv Mater. (USSR) 7:155 (1973).

    Google Scholar 

  45. V. E. Terres, W. Jahn, and H. Reissmann, Brennstoff-Chemie 38:129 (1957).

    Google Scholar 

  46. R. Tsumura and G. C. Straty, Cryogenics 17:195 (1977).

    Google Scholar 

  47. D. G. Friend, J. F. Ely, and H. Ingham, J. Phys. Chem. Ref. Data 18:583 (1989).

    Google Scholar 

  48. K. Bier, J. Kunze, and G. Maurer, J. Chem. Thermodynam. 8:857 (1976).

    Google Scholar 

  49. T. Miyazaki, A. V. Hejmadi, and J. E. Powers, J. Chem. Thermodynam. 12:105 (1980).

    Google Scholar 

  50. B. A. Younglove, J. Res. Natl Bur. Stand. (USA) 78A:401 (1974).

    Google Scholar 

  51. H. M. Roder, J. Res. Natl. Bur. Stand. (USA) 80A:739 (1976).

    Google Scholar 

  52. M. A. Anisimov, V. G. Beketov, V. P. Voronov, V. B. Nagaev, and V. A. Smirnov, Teplofiz. Svoistva Veshchestv Mater. (USSR) 16:124 (1984).

    Google Scholar 

  53. B. E. Gammon and D. R. Douslin, J. Chem. Phys. 64:203 (1976).

    Google Scholar 

  54. G. C. Straty, Cryogenics 14:367 (1974).

    Google Scholar 

  55. J. P. M. Truster and M. Zarari, J. Chem. Thermodynam. 24:973 (1992).

    Google Scholar 

  56. M. L. Jones, D. T. Mage, R. C. Faulkner, and D. L. Katz, Chem. Eng. Progr. Symp. Ser. 59:52 (1963).

    Google Scholar 

  57. P. H. G. van Kasteren and H. Zeldenrust, Ind. Eng. Chem. Fundam. 18:333 (1979).

    Google Scholar 

  58. M. Burton and D. Balzarini, Can. J. Phys. 52:2011 (1974).

    Google Scholar 

  59. D. Balzarini and M. Burton, Can. J. Phys. 57:1516 (1979).

    Google Scholar 

  60. M. W. Pestak, R. E. Goldstein, M. H. W., Chan, J. R. de Bruyn, D. A. Balzarini, and N. W. Ashcroft, Phys. Rev. B 36:599 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, S.B., Sengers, J.V. An improved parametric crossover model for the thermodynamic properties of fluids in the critical region. Int J Thermophys 14, 1–32 (1993). https://doi.org/10.1007/BF00522658

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00522658

Key words

Navigation