Theoretical and Experimental Chemistry

, Volume 19, Issue 2, pp 119–125 | Cite as

Group-theoretical approach in the method of diatomics in molecules and the secular equation for clusters of alkali metals

  • A. Ya. Polishchuk


Alkali Metal Secular Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. N. Lagar'kov and I. T. Yakubov, “Ionic complexes in alkali metal vapors,” in: Plasma Chemistry [in Russian], No. 7, 75–109 (1980).Google Scholar
  2. 2.
    N. M. Kortsenshtein. “Investigation of the kinetics of the condensation process in a chemically reacting system,” in: Thermophysical Properties of Chemically Reacting Systems [in Russian], Energeticheskii Institute im. G. M. Krzhizhanovskogo, Moscow (1980), p. 65–73.Google Scholar
  3. 3.
    P. J. Foster, R. E. Leckenby, and E. J. Robbins, “The ionization potentials of clustered alkali metal atoms,” J. Phys., 28, No. 2, 478–485 (1969).Google Scholar
  4. 4.
    A. Herrman, E. Schumacher, and L. Woste, “Preparation and photoionization potentials of molecules of sodium, potassium, and mixed atoms,” J. Chem. Phys., 68, No. 5, 2327–2336 (1978).Google Scholar
  5. 5.
    C. H. Wu, “Thermochemical properties of gaseous Li2 and Li3,” ibid., 65, No. 8, 3181–3186 (1976).Google Scholar
  6. 6.
    R. Car and J. L. Martins, “Pseudopotential spin-density functional of the electronic properties of small Li and Na clusters,” Surf. Sci., 106, No. 1/3, 280–287 (1981).Google Scholar
  7. 7.
    N. K. Ray and J. Switalski, “Floating spherical Gaussian orbital studies with a model potential,” Theor. Chim. Acta, 41, No. 3, 329–333 (1976).Google Scholar
  8. 8.
    B. T. Pickup and W. B. Brown, “A pseudohamilton model for small alkali metal clusters,” Mol. Phys., 23, No. 6, 1189–1197 (1972).Google Scholar
  9. 9.
    J. Flag, H. Stoll, and H. Preuss, “Calculation of equilibrium geometries and ionization potentials for sodium clusters up to Na8,” J. Chem. Phys., 71, No. 7, 3042–3052 (1979).Google Scholar
  10. 10.
    R. C. Raffenetti and K. Ruedenberg, “SCF calculation of trialkali ions with pseudoscaled nonorthogonal OA basis,” J. Chem. Phys., 59, No. 11, 5978–5987 (1973).Google Scholar
  11. 11.
    F. O. Ellison, “A method of diatomics in molecules. 1. General theory and application to H2O,” J. Am. Chem. Soc., 85, No. 20, 3540–3547 (1963).Google Scholar
  12. 12.
    A. V. Nemukhin and N. F. Stepanov, “Investigation of the geometric structure of the H2O, Li2O, and LiOH molecules by the method of diatomics in molecules,” Zh. Strukt. Khim., 19, No. 5, 771–778 (1978).Google Scholar
  13. 13.
    N. F. Stepanov and A. V. Nemukhin, “Theoretical calculation of the fundamental vibrational frequencies of the LiOH molecule,” Opt. Spektrosk., 45, No. 5, 1193–1194 (1978).Google Scholar
  14. 14.
    A. V. Nemukhin and N. F. Stepanov, “Calculations of potential energy surfaces of small molecules by the method of diatomics in molecules,” Fiz. Mol., No. 7, 87–107 (1969).Google Scholar
  15. 15.
    M. B. Faist and J. T. Muckerman, “On the valence bond diatomics-in-molecules method. 1. A projection operator reformulation,” J. Chem. Phys., 71,No. 1, 225–237 (1979).Google Scholar
  16. 16.
    A. Ya. Polishchuk, V. D. Rusanov, A. A. Fridman, et al., “Mechanism and kinetics of the interaction of molecular hydrogen with lithium under nonequilibrium conditions,” Teor. Eksp. Khim., 16, No. 2, 132–135 (1980).Google Scholar
  17. 17.
    B. T. Pickup, “The symmetric group and the method of diatomics in molecules: an application to small lithium clusters,” Proc. R. Soc. London A, 333, No. 1, 69–87 (1973).Google Scholar
  18. 18.
    I. G. Kaplan, Symmetry of Many-Electron Systems in Russian, Nauka, Moscow (1969).Google Scholar
  19. 19.
    R. B. Abrams, J. C. Patel, and F. O. Ellison, “Method of diatomics-in-molecules. 9. Ground and excited states of H4, and the H2,H2 bimolecular exchange reactions,” J. Chem. Phys., 49, No. 1, 450–457 (1968).Google Scholar
  20. 20.
    G. V. Pfeiffer and F. O. Ellison, “Theoretical prediction of stable Li3 +,” J. Chem. Phys., 43, No. 8, 3405–3406 (1965).Google Scholar
  21. 21.
    G. V. Pfeiffer, N. T. Huff, E. M. Greenwalt, and F. O. Ellison, “Method of diatomics-in-molecules. 4. Ground and excited states of H3 +, H4 +, H5 +, and H6 +,” J. Chem. Phys., 46, No. 3, 821–822 (1967).Google Scholar
  22. 22.
    J. C. Tully and C. M. Truesdale, “Diatomics-in-molecules potential energy surfaces. 3. Non-Hermitian formulation,” J. Chem. Phys., 65, No. 3, 1002–1007 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • A. Ya. Polishchuk
    • 1
  1. 1.Institute of High TemperaturesAcademy of Sciences of the USSRMoscow

Personalised recommendations