Archives of Microbiology

, Volume 133, Issue 4, pp 289–294 | Cite as

Glucose uptake of Cytophaga johnsonae studied in batch and chemostat culture

  • Manfred G. Höfle
Original Papers


The influence of different physiological states on the glucose uptake and mineralization by Cytophaga johnsonae, a freshwater isolate, was examined in batch and chemostat cultures. At different growth rates under glucose limitation in chemostat cultures, different uptake patterns for 14C labeled glucose were observed. In batch culture and at high growth rates the glucose uptake potential showed a higher maximum velocity and a much lower substrate affinity than at lower growth rates. These findings and the results of short-term labeling patterns could be explained by two different glucose uptake mechanisms which enable the strain to grow efficiently both at high and low substrate concentrations. Substrate specificity studies showed that a structural change of the C-2 atom of the glucose molecule was tolerated by both systems. The consequences of these results for the ecophysiological classification of the Cytophaga group and for the operation of continuous cultures are discussed.

Key words

Cytophaga johnsonae Glucose uptake Substrate specificity Substrate affinity Chemostat operation Facultative oligotrophy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews KJ, Lin ECC (1976) Selective advantages of various bacteria carbohydrate transport mechanisms. Fed Proc 35:2185–2189Google Scholar
  2. Behrens H (1978) Charakterisierung der DNA gleitender Bakterien der Ordnung Cytophagales. Ph. D. Thesis, TU BraunschweigGoogle Scholar
  3. Bell CR, Holder-Franklin MA, Franklin M (1982) Correlation between predominant heterotrophic bacteria and physicochemical water quality parameters in two Canadian rivers. Appl Environ Microbiol 43:269–283Google Scholar
  4. Bergmeyer HU (1974) Methoden der enzymatischen Analyse. 3. Aufl. Verlag Chemie, WeinheimGoogle Scholar
  5. Cavari BZ, Phelps G (1977) Sensitive enzymatic assay for glucose determination in natural waters. Appl Environ Microbiol 33:1237–1243Google Scholar
  6. Christensen PJ (1977) The history, biology and taxonomy of the Cytophaga group. Can J Microbiol 23:1599–1653Google Scholar
  7. Dawes EA (1981) Carbon metabolism. In: Calcott PH (ed) Continuous cultures of cells, vol 2. CRC Press, Boca Raton, pp 1–38Google Scholar
  8. Droop MR (1973) Some thoughts on nutrient limitation in algae. J Phycol 9:264–272Google Scholar
  9. Eaddie GS (1942) The inhibition of cholinesterase by physostigmine and prostigmine. J Biol Chem 146:85–93Google Scholar
  10. Güde H (1978) Model experiments on regulation of bacterial polysaccharide degradation in lakes. Arch Hydrobiol/Suppl 55:157–185Google Scholar
  11. Güde H (1980) Occurrence of Cytophagas in sewage plants. Appl Environ Microbiol 39:756–763Google Scholar
  12. Herbert D, Elsworth R, Telling RC (1956) The continuous culture of bacteria: a theoretical and experimental study. J Gen Microbiol 14:601–622Google Scholar
  13. Hirsch I, Reichenbach H (1981) The Cytophaga-like bacteria: a search for key characters. In: Reichenbach H, Weeks OB (eds) The flavobacterium-cytophaga group. GBF Monograph Series No. 5. Verlag Chemie International, Weinheim, pp 145–151Google Scholar
  14. Hirsch P (1979) Life under conditions of low nutrient concentration. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 357–372Google Scholar
  15. Höfle MG (1979) Effects of sudden temperature shifts on pure cultures of four strains of freshwater bacteria. Microbial Ecol 5:17–26Google Scholar
  16. Höfle MG (1981) Ökophysiologische Modelluntersuchungen zum Einfluß von Temperatur und Nährstoffbedingungen auf den Stoffumsatz von Reinkulturen heterotropher Gewässerbakterien. Ph. D. Thesis, Univ. FreiburgGoogle Scholar
  17. Hogg RW (1977) L-Arabinose transport and the L-arabinose binding protein of Escherichia coli. J Supramol Structure 6:411–417Google Scholar
  18. Ischida Y, Kadota H (1981) Growth patterns and substrate requirements of naturally occurring obligate oligotrophs. Microbial Ecol 7:123–130Google Scholar
  19. Jannasch HW (1967) Enrichments of aquatic bacteria in continuous culture. Arch Microbiol 59:165–173Google Scholar
  20. Jannasch HW (1974) Steady state and the chemostat in ecology. Limnol Oceanogr 19:716–720Google Scholar
  21. Kuznetsov SJ, Dubinina GA, Lapteva NA (1979) Biology of oligotrophic bacteria. Ann Rev Microbiol 33:377–387Google Scholar
  22. Lacoste A-M, Cassaigne A, Neuzil E (1981) Transport of inorganic phosphate in Pseudomonas aeruginosa. Curr Microbiol 6:115–120Google Scholar
  23. Larson RJ, Pate JL (1976) Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum. J Bacteriol 126:282–293Google Scholar
  24. Mopper K, Dawson R, Liebezeit G, Ittekkot V (1980) The monosaccharide spectra of waters. Marine Chem 10:55–66Google Scholar
  25. Poindexter JS (1981) Oligotrophy: fast and famine existence. Adv Microbial Ecol 5:63–89Google Scholar
  26. Reichardt W (1974) Zur Ökophysiologie einiger Gewässerbakterien aus der Cytophaga-Flavobacterium-Gruppe. Zbl Bakt Hyg I Abt Orig A 227:85–93Google Scholar
  27. Reichenbach H, Weeks OB (eds) (1981) The flavobacterium-cytophaga group. GBF Monograph Series, No. 5, Verlag Chemie International, WeinheimGoogle Scholar
  28. Rhee GY (1980) Continuous culture in phytoplankton ecology. In: Droop MR, Jannasch HW (eds) Advances in aquatic microbiology, vol 2. Academic Press, London, pp 151–203Google Scholar
  29. Schlegel HG, Jannasch HW (1981) Prokaryotes and their habitats. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, Berlin Heidelberg New York, pp 43–82Google Scholar
  30. Sieburth J McN (1979) Sea microbes. Oxford University Press, New YorkGoogle Scholar
  31. Steinitz K (1961) Detection and identification of fructose-1-phosphate by paper chromatography. Anal Biochem 2:497–501Google Scholar
  32. Strehler BL (1968) Bioluminescence assay: principles and practice. In: Gölick D (ed) Methods of biochemical analysis, vol 16. Interscience Publication, New York, pp 341–356Google Scholar
  33. Tempest DW, Neijssel OM (1978) Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments. Adv Microbial Ecol 2:105–153Google Scholar
  34. Villarejo M, Stanovich J, Young K., Edlin G (1978) Differences in membrane proteins, cyclic AMP levels, and glucose transport between batch and chemostat cultures of Escherichia coli. Curr Microbiol 1:345–348Google Scholar
  35. Winogradski S (1949) Microbiologie du sol. Oeuvres complètes. Masson, ParisGoogle Scholar
  36. Wright RT (1978) Measurement and significance of specific activity in the heterotrophic bacteria of natural waters. Appl Environ Microbiol 36:297–305Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Manfred G. Höfle
    • 1
  1. 1.Limnologisches Inst. der Universität KonstanzKonstanzGermany

Personalised recommendations