Current Genetics

, Volume 14, Issue 5, pp 437–443 | Cite as

Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger

  • C. J. Bos
  • A. J. M. Debets
  • K. Swart
  • A. Huybers
  • G. Kobus
  • S. M. Slakhorst
Original Articles

Summary

A start has been made on establishing a collection of Aspergillus niger colour and auxotrophic mutants with an isogenic background for use as a source of genetic markers. All strains have short conidiophores (cspAl ), which makes them easy to handle on test plates. Genetic markers were combined stepwise by somatic recombination. Somatic diploids were obtained at frequencies of 10−6-10−5 with conidiospores collected from a heterokaryon. The haploidization of heterozygous diploids was induced by benomyl. For unlinked markers, the frequency of recombinants varied from 35%–65%. Low frequencies of recombinants were found between markers on a same chromosome, but this was sometimes disturbed by mitotic crossing-over during an early stage of the diploid. Master strains were constructed having markers for six linkage groups.

Key words

Aspergillus niger Genetic analysis Genetic markers Linkage groups Master strains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avezedo JL, Bonatelli R (1983) In: Krumphanzl V, Sityta B, Vanek Z (eds) Overproduction of microbiological products. Academic Press, London, pp 439–450Google Scholar
  2. Ball C, Butler JM, Morrison J (1978) Eur J Appl Microbiol Biotechnol 5:622–628Google Scholar
  3. Bos CJ (1985) Induced mutation and somatic recombination as tools for genetic analysis and breeding of imperfect fungi. PhD thesis, Agricultural University Wageningen, The NetherlandsGoogle Scholar
  4. Bos CJ (1987) Curr Genet 12:471–474Google Scholar
  5. Bos CJ, Stam P, Van der Veen JH (1988) Mutat Res 197:67–75Google Scholar
  6. Buxton FP, Gwynne DI, Davies RW (1985) Gene 37:207–214Google Scholar
  7. Chang I, Tuveson RW (1967) Mycologia 66:67–72Google Scholar
  8. Fiedurek J, Ilczuk Z (1983) Acta Aliment Polonica 9:101–111Google Scholar
  9. Goosen T, Bloemheuvel G, Gysler C, De Bie DA, Van den Broek HWJ, Swart K (1987) Curr Genet 11:499–503Google Scholar
  10. Ilczuk Z (1971) Nahrung 15:381–388Google Scholar
  11. Kelly JM, Hynes MJ (1985) EMBO J 4:475–479Google Scholar
  12. Kundu PN, Das A (1985) J Appl Biotechnol 59:1–5Google Scholar
  13. Lhoas P (1967) Genet Res 10:45–61Google Scholar
  14. Maleska R, Pieniazek NJ (1981) Asp Newsl 15:36–38Google Scholar
  15. Pascova J, Munk V (1963) Folia Microbiol (Prague) 8:378–380Google Scholar
  16. Pontecorvo G, Roper JA, Hemmons LM, MacDonald MKD, Bufton AWJ (1953) Adv Genet 5:141–238Google Scholar
  17. Pontecorvo G, Roper JA, Forbes E (1953) J Gen Microbiol 8:198–210Google Scholar
  18. Van Hartingsveldt W, Mattern IE, Van Zeijl CMJ, Pouwels PH, Van den Hondel CAMJJ (1987) Mol Gen Genet 206:71–75Google Scholar
  19. Van Tuyl JM (1977) PhD thesis, Agricultural University, WageningenGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • C. J. Bos
    • 1
  • A. J. M. Debets
    • 1
  • K. Swart
    • 1
  • A. Huybers
    • 1
  • G. Kobus
    • 1
  • S. M. Slakhorst
    • 1
  1. 1.Department of GeneticsAgricultural UniversityWageningenThe Netherlands

Personalised recommendations