Skip to main content
Log in

A force-field model and steric reactivity factor estimation

  • Brief Communications
  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

Steric reactivity factor estimation is considered on the basis of the energies of various substrate and intermediate conformations within the framework of a forcefield model. The example of alkali hydrolysis of ethyl esters of substituted acetic and malonic acids is taken to examine the relationship between the steric reactivity indices, the steric constants of the substituents, and the rate constants. It is found that the main contribution to the steric component of the free energy of activation comes from the van der Waals interaction in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. A. Palm, Principles of Quantitative Organic-Reaction Theory [in Russian], Khimiya, Leningrad (1977).

    Google Scholar 

  2. V. E. Kuz'min, G. L. Kamalov, R. N. Lozitskaya, et al., Simulating Steric Interactions in Nucleophilic Attachment at a Carbonyl Group [in Russian], Moscow (1984), deposited at VINITI March 5, 1984, No. 1408-84 dep.

  3. V. I. Galkin and R. A. Cherkasov, “The relation between structure and reactivity. Part 1. The steric-effect problem,” Reakts. Sposob. Org. Soed., 18, No. 1, 111–132 (1981).

    Google Scholar 

  4. F. Becker, “Theoretische Behandlung des Einflusses sterischer Effekte auf die Reaktivität aliphatischer Verbindungen. 1,” Z. Naturforsch. A, 14, No. 5/6, 547–556 (1959).

    Google Scholar 

  5. F. Becker, “Theoretische Behandlung des Einflusses sterischer Effekte auf die Reaktivität aliphatischer Verbindungen. 2. Zum Orientierungsproblem bei bimolekularen Abspaltungs-reaktionen,” ibid, 15, No. 4, 247–256 (1960).

    Google Scholar 

  6. F. Becker, “Zum Problem der sterischen Hinderung bei Bildung und Hydrolyse von gesättigten aliphatischen Carbonsäureestern,” ibid, 16, No. 4, 236–245 (1961).

    Google Scholar 

  7. E. G. Denisov, Kinetics of Homogeneous Chemical Reactions [in Russian], Vyssh. Shkola, Moscow (1978).

    Google Scholar 

  8. R. W. Taft, “Distinguishing the effect of polar, spatial, and resonance factors in reactivity,” Steric Effects in Organic Chemistry [Russian translation], Izd. In. Lit., Moscow (1960), pp. 562–586.

    Google Scholar 

  9. V. G. Dashevskii, Conformational Analysis of Organic Molecules [in Russian], Khimiya, Moscow (1982).

    Google Scholar 

  10. V. G. Dashevskii, “The conformations of sugars and polysaccharides,” Surveys of Sciences and Engineering, Organic Chemistry Series [in Russian], VINITI, Moscow (1975), pp. 99–142.

    Google Scholar 

  11. V. M. Ivanova, V. N. Kalinina, L. A. Neshumova, et al., Mathematical Statistics [in Russian], Vyssh. Shkola, Moscow (1981).

    Google Scholar 

  12. G. L. Kamalov and R. N. Lozitskaya, “The reactivities of the ethoxycarbonyl groups in arylidenemalonic and acrylidenemalonic esters in alkaline hydrolysis,” Dokl. AN Ukr. SSR, Ser. B, No. 10, 44–47 (1983).

    Google Scholar 

  13. D. V. Pozigun, R. N. Lozitskaya, and G. L. Kamalov, Calculating Rate Constants for Two-Stage Serial-Parallel Second-Order Reactions [in Russian], Deposited at Ukr. VINITI, Kiev, April 16, 1984, No. 415 UK-D84.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Éksperimental'naya Khimiya, No. 3, pp. 366–370, May–June, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuz'min, V.E., Pozigun, D.V., Lozitskaya, R.N. et al. A force-field model and steric reactivity factor estimation. Theor Exp Chem 22, 352–356 (1986). https://doi.org/10.1007/BF00521166

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00521166

Keywords

Navigation