Advertisement

Biochemical Genetics

, Volume 3, Issue 2, pp 109–117 | Cite as

Evolutionary pattern of specificity regions in light chains of immunoglobulins

  • Thomas H. Jukes
Article

Abstract

An examination of the distribution of changes of single amino acids in the specificity (S) regions of light chains of immunoglobulins G shows that the changes, in terms of minimum base changes at each site, correspond quite well with the Poisson distribution, if it is assumed that approximately ten sites are invariant and five in the “hinge” region are hypervariable. The findings are concordant with other evidence that the S regions of light chains are evolving in a manner similar to that in other series of homologous proteins, such as the cytochromes c and hemoglobins, by the incorporation of randomly occurring adaptive or neutral point mutations into the genome and the discarding of deleterious point mutations. It is suggested that mutations in S regions are predominantly adaptive and that those in C regions are usually deleterious, thus accounting for the variability of S and the constancy of C sequences.

Keywords

Point Mutation Light Chain Specificity Region Poisson Distribution Homologous Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenner, S., and Milstein, C. (1966). Origin of antibody variability. Nature 211 242.Google Scholar
  2. Britten, R. J., and Kohne, D. E. (1965–66). Nucleotide sequence repetition in DNA. Carnegie Inst. Wash. Year Book 65 78.Google Scholar
  3. Cantor, C. R., and Jukes, T. H. (1966). Repetitions in the polypeptide sequence of cytochromes. Biochem. Biophys. Res. Commun. 23 319.Google Scholar
  4. Cunningham, B. A., Gottlieb, P. D., Konigsberg, W. H., and Edelman, G. M. (1968). The covalent structure of a human γG-immunoglobulin, V. Partial amino acid sequence of the light chain. Biochemistry 7 1983.Google Scholar
  5. Dreyer, W. J., Gray, W. R., and Hood, L. (1967). The genetic, molecular, and cellular basis of antibody formation: some facts and a unifying hypothesis. Cold Spring Harbor Symp. Quant. Biol. 32 353.Google Scholar
  6. Fitch, W. M., and Margoliash, E. (1967). A method for estimating the number of invariant amino acid coding positions in a gene using cytochrome c as a model case. Biochem. Genet. 1 65.Google Scholar
  7. Gottlieb, P. D., Cunningham, B. A., Waxdal, M. J., Konigsberg, W. H., and Edelman, G. M. (1968). Variable regions of heavy and light polypeptide chains of the same γG-immunoglobulin molecule. Proc. Natl. Acad. Sci. 61 168.Google Scholar
  8. Gray, W. R., Dreyer, W. J., and Hood, L. (1967). Mechanism of antibody synthesis: size differences between mouse kappa chains. Science 155 465.Google Scholar
  9. Hilschmann, N. (1967). Amino acid sequence studies with Bence-Jones proteins. Hoppe-Seylers Z. Physiol. Chem. 348 1070.Google Scholar
  10. Hood, L., and Ein, D. (1968). Genetic implications of common region sequence comparisons of lambda immunoglobulin chains differing at position 190. Science 162 679.Google Scholar
  11. Hood, L., Gray, W. R., Sanders, B. G., and Dreyer, W. J. (1967). Light chain evolution. Cold Spring Harbor Symp. Quant. Biol. 32 133.Google Scholar
  12. Jukes, T. H. (1966). Molecules and Evolution. Columbia University Press, New York.Google Scholar
  13. Jukes, T. H., and Cantor, C. R. (1968). Evolution of protein molecules. In H. N. Munro (ed.), Mammalian Protein Evolution. Academic Press, New York, Vol. 3, p. 21.Google Scholar
  14. Kabat, E. A. (1967). A comparison of invariant residues in the variable and constant regions of human K, human L, and mouse K Bence-Jones proteins. Proc. Natl. Acad. Sci. 58 229.Google Scholar
  15. Kimura, M. (1969). Evolutionary rate at the molecular level. Nature 217 624.Google Scholar
  16. King, J. L., and Jukes, T. H. (1969). Non-Darwinian evolution. Science (in press).Google Scholar
  17. Milstein, C. (1966). Nature 209 370.Google Scholar
  18. Milstein, C. (1967a). Linked groups of residues in immunoglobulin chains. Nature 216 330.Google Scholar
  19. Milstein, C. (1967b). Variations in the C-terminal half of immunoglobulin λ chains. Biochem. J. 104: 28C.Google Scholar
  20. Muller, H. J. (1947). The production of mutations by X-rays. Proc. Roy. Soc. B. 134 1.Google Scholar
  21. Perutz, M. F. (1965). Structure and function of haemoglobin I. A tentative atomic model of horse oxyhaemoglobin. J. Mol. Biol. 13 646.Google Scholar
  22. Putnam, F. W., Titani, K., and Whitley, E., Jr. (1966). Chemical structure of light chains: amino acid sequence of type K. Proc. Roy. Soc. B. 166 124.Google Scholar
  23. Putnam, F. W., Shinoda, T., Titani, K., and Wikler, M. (1967a). Immunoglobin structure: variation in amino acid sequence and length of human lambda light chains. Science 157 1050.Google Scholar
  24. Putnam, F. W., Titani, K., Wikler, M., and Shinoda, T. (1967b). Structure and evolution of kappa and lambda light chains. Cold Spring Harbor Symp. Quant. Biol. 32 9.Google Scholar
  25. Singer, S. J., and Thorpe, N. O. (1968). On the location and structure of the active sites of antibody molecules. Proc. Natl. Acad. Sci. 60 1371.Google Scholar
  26. Smith, E. L. (1967). The evolution of proteins. Harvey Lectures 62 231.Google Scholar
  27. Smithies, O. (1963). Gamma globulin variability: a genetic hypothesis. Nature 199 1231.Google Scholar
  28. Smithies, O. (1967). Antibody variability. Science 157 267.Google Scholar
  29. Talmage, D. W. (1965). Single point mutations or chromosomal rearrangement? Science 150 1484.Google Scholar
  30. Titani, K., Whitley, E., Jr., Avogardo, L., and Putnam, F. W. (1965). Immunoglobulin structure: partial amino acid sequence of a Bence-Jones protein. Science 149 1090.Google Scholar
  31. Titani, K., Wikler, M., and Putnam, F. W. (1967). Evolution of immunoglobulins: structural homology of kappa and lambda Bence-Jones proteins. Science 155 828.Google Scholar
  32. Waxdal, M. J., Konigsberg, W. H., and Edelman, G. M. (1967). The structure of a human gamma G immunoglobulin. Cold Spring Harbor Symp. Quant. Biol. 32 53.Google Scholar
  33. Wikler, M., Titani, K., Shinoda, T., and Putnam, F. W. (1967). The complete amino acid sequence of a lambda type Bence-Jones protein. J. Biol. Chem. 242 1668.Google Scholar

Copyright information

© Plenum Publishing Corporation 1969

Authors and Affiliations

  • Thomas H. Jukes
    • 1
  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeley

Personalised recommendations