Skip to main content
Log in

Codominant autosomal inheritance of polymorphic red cell acid phosphatases of lemurs and some properties of the enzymes

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Red cell acid phosphatase phenotypes of 207 captive animals of the genera Lemur, Hapalemur, and Propithecus were determined by starch gel electrophoresis and phosphatase-specific staining. In Lemur fulvus, three phenotypes, designated A, B, and AB, were observed. In each of the species L. catta, L. macaco, L. mongoz, and L. variegatus, a single phenotype was observed. In Hapalemur griseus, three phenotypes were found: A, B, and AB. In Propithecus verreauxi, a single phenotype was found. Examination of breeding records in conjunction with the results of the electrophoretic analyses supports the conclusion that the erythrocytic acid phosphatases in this group of nonhuman primates are the products of at least two codominant autosomal alleles. There is a wide range of specific activities of the acid phosphatases as determined by colorimetric assays. The values range from 60.6 μmoles of p-nitrophenol released per gram of hemoglobin per 30 min in Lemur catta to 429.1 μmoles in Propithecus verreauxi. The enzymes of L. fulvus and P. verreauxi were purified approximately 400-fold, and Michaelis-Menten constants were determined on the purified preparations. For L. fulvus phenotype A, K m =0.8 mM; for L. fulvus phenotype B, K m =0.8 mM; and for P. verreauxi, K m =0.6 mM; the substrate in each case was p-nitrophenylphosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angeletti, P. U., and Gayle, R. (1962). Chromatography of red cell hemolysate. Blood 2051.

    Google Scholar 

  • Barnicot, N. A., and Cohen, P. (1970). Red cell enzymes of primates (Anthropoidea). Biochem. Genet. 441.

    Google Scholar 

  • Barnicot, N. A., and Hewett-Emmett, D. (1971). Red cell and serum proteins of talapoin, patas, and vervet monkeys. Folia Primatol. 1565.

    Google Scholar 

  • Barnicot, N. A., and Hewett-Emmett, D. (1972). Red cell and serum proteins of Cercocebus, Presbytis, Colobus, and certain other species. Folia Primatol. 17442.

    Google Scholar 

  • Bessey, O. A., Lowry, O. H., and Brock, M. J. (1946). A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164321.

    Google Scholar 

  • Bottini, E., and Modiano, G. (1964). Effect of oxidized glutathione on human red cell acid phosphatases. Biochem. Biophys. Res. Commun. 17260.

    Google Scholar 

  • Brewer, G. J., and Powell, R. D. (1963). Hexokinase activity as a function of age of the human erythrocyte. Nature 199704.

    Google Scholar 

  • Buettner-Janusch, J., and Wiggins, R. C. (1970). Haptoglobins and acid phosphatases of Galago. Folia Primatol. 13166.

    Google Scholar 

  • Buettner-Janusch, J., Washington, J. L., and Buettner-Janusch, V. (1971). Hemoglobins of Lemuriformes. Arch. Inst. Pasteur Madagascar 40127.

    Google Scholar 

  • Buettner-Janusch, J., Dame, L., Mason, G. A., and Sade, D. S. (1974). Primate red cell enzymes: Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Am. J. Phys. Anthropol. 417.

    Google Scholar 

  • Dixon, M., and Webb, E. C. (1964). Enzymes, 2nd ed., Academic Press, New York.

    Google Scholar 

  • Edwards, M. J., Cannon, B., Albertson, J., and Bigley, R. H. (1971). Mean red cell age as a determinant of blood oxygen affinity. Nature 230583.

    Google Scholar 

  • Eze, L. C., Tweedie, M. C. K., Bullen, M. F., Wren, P. J. J., and Evans, D. A. P. (1974). Quantitative genetics of human red cell acid phosphatase. Ann. Hum. Genet. 37333.

    Google Scholar 

  • Fenton, M. R., and Richardson, K. E. (1971). Human erythrocytic acid phosphatase: Resolution and characterization of the isozymes from three homozygous phenotypes. Arch. Biochem. Biophys. 14213.

    Google Scholar 

  • Fisher, R. A., and Harris, H. (1971). Studies on the separate isozymes of red cell acid phosphatase phenotypes A and B. II. Comparison of kinetics and stabilities of the isozymes. Ann. Hum. Genet. 34439.

    Google Scholar 

  • Friedman, J. J. (1976). Functional properties of the blood. In Selkurt, E. E. (ed.), Physiology, Little, Brown, Boston, pp. 241–253.

    Google Scholar 

  • Giblett, E. R. (1969). Genetic Markers in Human Blood, Blackwell, Oxford/Edinburgh, p. 438.

    Google Scholar 

  • Giblett, E. R., and Scott, N. M. (1965). Red cell acid phosphatase: Racial distribution and report of a new phenotype. Am. J. Hum. Genet. 17425.

    Google Scholar 

  • Hopkinson, D. A., Spencer, N., and Harris, H. (1963). Red cell acid phosphatase variants: A new human polymorphism. Nature 199969.

    Google Scholar 

  • Hopkinson, D. A., Spencer, N., and Harris, H. (1964). Genetical studies on human red cell acid phosphatase. Am. J. Hum. Genet. 16141.

    Google Scholar 

  • Hunter, F. T. (1940). A photoelectric method for the quantitative determination of erythrocyte fragility. J. Clin. Invest. 19692.

    Google Scholar 

  • Karp, G. W., and Sutton, H. E. (1967). Some new phenotypes of human red cell acid phosphatase. Am. J. Hum. Genet. 1954.

    Google Scholar 

  • Kosower, N. S., Song, K. R., and Kosower, E. M. (1969). Glutathione. IV. Intracellular oxidation and membrane injury. Biochim. Biophys. Acta 19223.

    Google Scholar 

  • Lai, L. Y. C. (1967). Polymorphism in red cell acid phosphatase of Macaca irus. Acta Genet. 17104.

    Google Scholar 

  • Lai, L. Y. C., Nevo, S., and Steinberg, A. G. (1964). Acid phosphatases of human red cells: Predicted phenotype conforms to a genetic hypothesis. Science 1451187.

    Google Scholar 

  • Levitzki, A., and Koshland, D. E. (1969). Negative cooperativity in regulatory enzymes. Proc. Natl. Acad. Sci. 621121.

    Google Scholar 

  • Lineweaver, H., and Burk, D. (1934). Determination of enzyme dissociation constants. J. Am. Chem. Soc. 56658.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.

    Google Scholar 

  • Luffman, J. E., and Harris, H. (1967). A comparison of some properties of human red cell acid phosphatase in different phenotypes. Ann. Hum. Genet. 30387.

    Google Scholar 

  • Marks, P. A., Johnson, A. B., and Hirschberg, E. (1958). Effect of age on the enzymatic activity in red cells. Proc. Natl. Acad. Sci. 44429.

    Google Scholar 

  • Mason, G. A. (1974). Genetic and biochemical studies of red cell acid phosphatases of lemurs, Ph.D. dissertation, Duke University, Durham, N.C.

    Google Scholar 

  • Nute, P. E., and Buettner-Janusch, J. (1969). Genetics of polymorphic transferrins in the genus Lemur. Folia Primatol. 10181.

    Google Scholar 

  • Olivier, T. J., Buettner-Janusch, J., and Buettner-Janusch, V. (1974). Carbonic anhydrase isoenzymes in nine troops of Kenya baboons, Papio cynocephalus (Linnaeus 1766). Am. J. Phys. Anthropol. 41175.

    Google Scholar 

  • Schmitt, J., Lichte, K. H., and Fuhrmann, W. (1970). Red cell enzymes of the Pongidae. Humangenetik 10138.

    Google Scholar 

  • Spencer, N., Hopkinson, D. A., and Harris, H. (1964). Quantitative differences and gene dosage in the human red cell acid phosphatase polymorphism. Nature 201299.

    Google Scholar 

  • Tsuboi, K. K., and Hudson, P. B. (1954). Acid phosphatase. II. Purification of human red cell phosphomonoesterase. Arch. Biochem. Biophys. 53341.

    Google Scholar 

  • Tsuboi, K. K., and Hudson, P. B. (1955). Acid phosphatase. III. Specific kinetic properties of highly purified human prostatic phosphomonoesterase. Arch. Biochem. Biophys. 55191.

    Google Scholar 

  • Tsuboi, K. K., and Hudson, P. B. (1956). Acid phosphatase. VI. Kinetic properties of purified yeast and erythrocyte phosphomonoesterase. Arch. Biochem. Biophys. 61197.

    Google Scholar 

  • Wintrobe, M. M. (1967). Clinical Hematology, Lea and Febiger, Philadelphia.

    Google Scholar 

  • Yunis, J. J., and Yasmineh, W. (1969). Glucose metabolism in human erythrocytes. In Yunis, J. J. (ed.), Biochemical Methods in Red Cell Genetics, Academic Press, New York, pp. 1–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work reported here was taken in part from a doctoral dissertation submitted by G.A.M. to the Graduate School of Duke University in partial fulfillment of the requirements for the Doctor of Philosophy degree. This work was supported by grants from the National Science Foundation (Nos. GS 39635X and BNS-74-02504), the USPHS (fellowship to G.A.M., No. GM-02007), and the Wenner-Gren Foundation (No. 2697).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, G.A., Buettner-Janusch, J. Codominant autosomal inheritance of polymorphic red cell acid phosphatases of lemurs and some properties of the enzymes. Biochem Genet 15, 487–507 (1977). https://doi.org/10.1007/BF00520193

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00520193

Key words

Navigation