Advertisement

Biochemical Genetics

, Volume 15, Issue 5–6, pp 487–507 | Cite as

Codominant autosomal inheritance of polymorphic red cell acid phosphatases of lemurs and some properties of the enzymes

  • George A. Mason
  • John Buettner-Janusch
Article

Abstract

Red cell acid phosphatase phenotypes of 207 captive animals of the genera Lemur, Hapalemur, and Propithecus were determined by starch gel electrophoresis and phosphatase-specific staining. In Lemur fulvus, three phenotypes, designated A, B, and AB, were observed. In each of the species L. catta, L. macaco, L. mongoz, and L. variegatus, a single phenotype was observed. In Hapalemur griseus, three phenotypes were found: A, B, and AB. In Propithecus verreauxi, a single phenotype was found. Examination of breeding records in conjunction with the results of the electrophoretic analyses supports the conclusion that the erythrocytic acid phosphatases in this group of nonhuman primates are the products of at least two codominant autosomal alleles. There is a wide range of specific activities of the acid phosphatases as determined by colorimetric assays. The values range from 60.6 μmoles of p-nitrophenol released per gram of hemoglobin per 30 min in Lemur catta to 429.1 μmoles in Propithecus verreauxi. The enzymes of L. fulvus and P. verreauxi were purified approximately 400-fold, and Michaelis-Menten constants were determined on the purified preparations. For L. fulvus phenotype A, K m =0.8 mM; for L. fulvus phenotype B, K m =0.8 mM; and for P. verreauxi, K m =0.6 mM; the substrate in each case was p-nitrophenylphosphate.

Key words

acid phosphatases erythrocyte enzymes isoenzymes Lemuriformes nonhuman primates genetic polymorphisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeletti, P. U., and Gayle, R. (1962). Chromatography of red cell hemolysate. Blood 2051.Google Scholar
  2. Barnicot, N. A., and Cohen, P. (1970). Red cell enzymes of primates (Anthropoidea). Biochem. Genet. 441.Google Scholar
  3. Barnicot, N. A., and Hewett-Emmett, D. (1971). Red cell and serum proteins of talapoin, patas, and vervet monkeys. Folia Primatol. 1565.Google Scholar
  4. Barnicot, N. A., and Hewett-Emmett, D. (1972). Red cell and serum proteins of Cercocebus, Presbytis, Colobus, and certain other species. Folia Primatol. 17442.Google Scholar
  5. Bessey, O. A., Lowry, O. H., and Brock, M. J. (1946). A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164321.Google Scholar
  6. Bottini, E., and Modiano, G. (1964). Effect of oxidized glutathione on human red cell acid phosphatases. Biochem. Biophys. Res. Commun. 17260.Google Scholar
  7. Brewer, G. J., and Powell, R. D. (1963). Hexokinase activity as a function of age of the human erythrocyte. Nature 199704.Google Scholar
  8. Buettner-Janusch, J., and Wiggins, R. C. (1970). Haptoglobins and acid phosphatases of Galago. Folia Primatol. 13166.Google Scholar
  9. Buettner-Janusch, J., Washington, J. L., and Buettner-Janusch, V. (1971). Hemoglobins of Lemuriformes. Arch. Inst. Pasteur Madagascar 40127.Google Scholar
  10. Buettner-Janusch, J., Dame, L., Mason, G. A., and Sade, D. S. (1974). Primate red cell enzymes: Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Am. J. Phys. Anthropol. 417.Google Scholar
  11. Dixon, M., and Webb, E. C. (1964). Enzymes, 2nd ed., Academic Press, New York.Google Scholar
  12. Edwards, M. J., Cannon, B., Albertson, J., and Bigley, R. H. (1971). Mean red cell age as a determinant of blood oxygen affinity. Nature 230583.Google Scholar
  13. Eze, L. C., Tweedie, M. C. K., Bullen, M. F., Wren, P. J. J., and Evans, D. A. P. (1974). Quantitative genetics of human red cell acid phosphatase. Ann. Hum. Genet. 37333.Google Scholar
  14. Fenton, M. R., and Richardson, K. E. (1971). Human erythrocytic acid phosphatase: Resolution and characterization of the isozymes from three homozygous phenotypes. Arch. Biochem. Biophys. 14213.Google Scholar
  15. Fisher, R. A., and Harris, H. (1971). Studies on the separate isozymes of red cell acid phosphatase phenotypes A and B. II. Comparison of kinetics and stabilities of the isozymes. Ann. Hum. Genet. 34439.Google Scholar
  16. Friedman, J. J. (1976). Functional properties of the blood. In Selkurt, E. E. (ed.), Physiology, Little, Brown, Boston, pp. 241–253.Google Scholar
  17. Giblett, E. R. (1969). Genetic Markers in Human Blood, Blackwell, Oxford/Edinburgh, p. 438.Google Scholar
  18. Giblett, E. R., and Scott, N. M. (1965). Red cell acid phosphatase: Racial distribution and report of a new phenotype. Am. J. Hum. Genet. 17425.Google Scholar
  19. Hopkinson, D. A., Spencer, N., and Harris, H. (1963). Red cell acid phosphatase variants: A new human polymorphism. Nature 199969.Google Scholar
  20. Hopkinson, D. A., Spencer, N., and Harris, H. (1964). Genetical studies on human red cell acid phosphatase. Am. J. Hum. Genet. 16141.Google Scholar
  21. Hunter, F. T. (1940). A photoelectric method for the quantitative determination of erythrocyte fragility. J. Clin. Invest. 19692.Google Scholar
  22. Karp, G. W., and Sutton, H. E. (1967). Some new phenotypes of human red cell acid phosphatase. Am. J. Hum. Genet. 1954.Google Scholar
  23. Kosower, N. S., Song, K. R., and Kosower, E. M. (1969). Glutathione. IV. Intracellular oxidation and membrane injury. Biochim. Biophys. Acta 19223.Google Scholar
  24. Lai, L. Y. C. (1967). Polymorphism in red cell acid phosphatase of Macaca irus. Acta Genet. 17104.Google Scholar
  25. Lai, L. Y. C., Nevo, S., and Steinberg, A. G. (1964). Acid phosphatases of human red cells: Predicted phenotype conforms to a genetic hypothesis. Science 1451187.Google Scholar
  26. Levitzki, A., and Koshland, D. E. (1969). Negative cooperativity in regulatory enzymes. Proc. Natl. Acad. Sci. 621121.Google Scholar
  27. Lineweaver, H., and Burk, D. (1934). Determination of enzyme dissociation constants. J. Am. Chem. Soc. 56658.Google Scholar
  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.Google Scholar
  29. Luffman, J. E., and Harris, H. (1967). A comparison of some properties of human red cell acid phosphatase in different phenotypes. Ann. Hum. Genet. 30387.Google Scholar
  30. Marks, P. A., Johnson, A. B., and Hirschberg, E. (1958). Effect of age on the enzymatic activity in red cells. Proc. Natl. Acad. Sci. 44429.Google Scholar
  31. Mason, G. A. (1974). Genetic and biochemical studies of red cell acid phosphatases of lemurs, Ph.D. dissertation, Duke University, Durham, N.C.Google Scholar
  32. Nute, P. E., and Buettner-Janusch, J. (1969). Genetics of polymorphic transferrins in the genus Lemur. Folia Primatol. 10181.Google Scholar
  33. Olivier, T. J., Buettner-Janusch, J., and Buettner-Janusch, V. (1974). Carbonic anhydrase isoenzymes in nine troops of Kenya baboons, Papio cynocephalus (Linnaeus 1766). Am. J. Phys. Anthropol. 41175.Google Scholar
  34. Schmitt, J., Lichte, K. H., and Fuhrmann, W. (1970). Red cell enzymes of the Pongidae. Humangenetik 10138.Google Scholar
  35. Spencer, N., Hopkinson, D. A., and Harris, H. (1964). Quantitative differences and gene dosage in the human red cell acid phosphatase polymorphism. Nature 201299.Google Scholar
  36. Tsuboi, K. K., and Hudson, P. B. (1954). Acid phosphatase. II. Purification of human red cell phosphomonoesterase. Arch. Biochem. Biophys. 53341.Google Scholar
  37. Tsuboi, K. K., and Hudson, P. B. (1955). Acid phosphatase. III. Specific kinetic properties of highly purified human prostatic phosphomonoesterase. Arch. Biochem. Biophys. 55191.Google Scholar
  38. Tsuboi, K. K., and Hudson, P. B. (1956). Acid phosphatase. VI. Kinetic properties of purified yeast and erythrocyte phosphomonoesterase. Arch. Biochem. Biophys. 61197.Google Scholar
  39. Wintrobe, M. M. (1967). Clinical Hematology, Lea and Febiger, Philadelphia.Google Scholar
  40. Yunis, J. J., and Yasmineh, W. (1969). Glucose metabolism in human erythrocytes. In Yunis, J. J. (ed.), Biochemical Methods in Red Cell Genetics, Academic Press, New York, pp. 1–49.Google Scholar

Copyright information

© Plenum Publishing Corp. 1977

Authors and Affiliations

  • George A. Mason
    • 1
  • John Buettner-Janusch
    • 2
  1. 1.Department of Biochemistry and NutritionThe University of North CarolinaChapel Hill
  2. 2.Department of AnthropologyNew York UniversityNew York

Personalised recommendations