Theoretical and Experimental Chemistry

, Volume 18, Issue 3, pp 303–308 | Cite as

Electron transfer and energy transfer in the quenching of triplet states by inorganic ions

  • G. V. Zakharova
  • V. E. Korobov
  • A. K. Chibisov
Brief Communications


Electron Transfer Energy Transfer Triplet State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. K. Chibisov, “Triplet states and their participation in photochemical reactions of electron transfer,” Khim. Vys. Energ., 10, No. 1, 3 (1976).Google Scholar
  2. 2.
    A. Treinin and E. Hayon, “Quenching of triplet states by inorganic ions. Energy transfer and charge transfer mechanisms,” J. Am. Chem. Soc., 98, No. 13, 3884 (1976).Google Scholar
  3. 3.
    R. Scheerer and M. GrÄtzel, “Laser photolysis studies of duroquinone triplet state electron transfer reactions,” J. Am. Chem. Soc., 99, No. 3, 865 (1977).Google Scholar
  4. 4.
    P. D. Wildes, N. N. Lichtin, M. Z. Hoffman, et al., “Anion and solvent effects on the rate of reduction of triplet excited thiazine dyes by ferrous ions,” Photochem. Photobiol., 25, No. 1, 21 (1977).Google Scholar
  5. 5.
    M. Ferreira, C. Isabel, and A. Harriman, “Photoredox reactions of thionine,” J. Chem. Soc. Faraday Trans., I, 73, No. 7, 1085 (1977).Google Scholar
  6. 6.
    S.-I. Tamura, K. Kikuchi, H. Kokubun, and Y. Usui, “The electron transfer reactions between triplet dyes and aromatic compounds in acetonitrile,” Z. Phys. Chem. BRD, 111, No. 1, 7 (1978).Google Scholar
  7. 7.
    F. Vogelmann, S. Schreiner, W. Rauscher, and H. E. A. Kramer, “Reactivity of organic dye triplet states in electron transfer processes,” Z. Phys. Chem. BRD, 101, No. 1/6, 321 (1976).Google Scholar
  8. 8.
    E. Vogelmann, W. Rauscher, and H. E. A. Kramer, “Reactivity of acridine dye triplet states in electron transfer reactions,” Photochem. Photobiol., 29, No. 4, 771 (1979).Google Scholar
  9. 9.
    J. Schroeder and F, Wilkinson, “Quenching of triplet states of aromatic hydrocarbons by quinones due to favorable charge-transfer interactions,” J. Chem. Soc. Faraday Trans., II, 75, No. 6, 896 (1979).Google Scholar
  10. 10.
    F. Wilkinson and A. Farmilo, “Mechanism of quenching of the triplet states of organic compounds by tris-(Β-diketonato) complexes of iron(III), ruthenium (III), and aluminum-(III),” J. Chem. Soc. Faraday Trans., II, 72, No. 3, 604 (1976).Google Scholar
  11. 11.
    J. B. Ersts and M. J. Pilling, “Temperature dependence of the rate of deactivation of triplet anthracene by metal ions,” J. Chem. Soc. Faraday Trans., II, 74, No. 7, 1403 (1978).Google Scholar
  12. 12.
    M. Almgren, F. Grieser, and J. K. Thomas, “Energy transfer from triplet aromatic hydrocarbons to Tb3+ and Eu3+ in aqueous micellar solutions,” J. Am. Chem. Soc., 101, No. 8, 2021 (1979).Google Scholar
  13. 13.
    F. Wilkinson and A. Farmilo, “Quenching of triplet state of acridine by chromium (III) complexes,” J. Chem. Soc. Faraday Trans., II, 74, No. 11, 2083 (1978).Google Scholar
  14. 14.
    V. L. Ermolaev, E. B. Sveshnikova, and T. A. Shakhverdov, “Complex formation between organic molecules and ions of rare earth elements in solutions by energy transfer mechods,” Usp. Khim., 45, No. 10, 1753 (1976).Google Scholar
  15. 15.
    V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Energy Transfer of Electron Excitation without Radiation [in Russian], Nauka, Leningrad (1977).Google Scholar
  16. 16.
    V. Balzani and F. Bolletta, “Energy transfer processes involving distorted excited states,” J. Am. Chem. Soc., 100, No. 23, 7404 (1978).Google Scholar
  17. 17.
    B. S. Brunschwig, J. Logan, M. D. Newton, and N. Sutin, “A semiclassical treatment of electron-exchange reactions. Application to the hexaaquoiron (III)-hexaaquoiron (II) system,” J. Am. Chem. Soc., 102, No. 18, 5798 (1980).Google Scholar
  18. 18.
    V. Balzani, L. Moggi, M. F. Manfrin, et al., “Quenching and sensitization processes of coordination compounds,” Coord. Chem. Rev., 15, No. 4, 321 (1975).Google Scholar
  19. 19.
    D. Rehm and A. Weller, “Kinetics of fluorescence quenching by electron and H-atom transfer,” Israel J. Chem., 8, No. 2, 259 (1970).Google Scholar
  20. 20.
    J. F. Holzwarth, “Electron transfer reactions,” in: Techniques and Applications of Fast Reactions in Solutions, Dordrecht (1979), pp. 509–521.Google Scholar
  21. 21.
    T. Turney, Oxidation Mechanisms, Plenum (1965).Google Scholar
  22. 22.
    W. Latimer, Oxidation States of Elements and Their Potentials in Aqueous Solutions, Prentice-Hall (1948).Google Scholar
  23. 23.
    R. O. Loutfy and J. H., Sharp, “Correlation between photographic properties of dyes and their electrochemical and spectroscopic parameters,” Photogr. Sci. Eng., 20, No. 4, 165 (1976).Google Scholar
  24. 24.
    C. K. Jorgensen, Absorption Spectra and Chemical Bonding of Complexes, Pergamon Press, Oxford (1962).Google Scholar
  25. 25.
    A. N. Terenin, Photonics of Dye Molecules and Related Organic Compounds [in Russian], Nauka, Leningrad (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • G. V. Zakharova
    • 1
  • V. E. Korobov
    • 1
  • A. K. Chibisov
    • 1
  1. 1.V. I. Vernadskii Institute of Geochemistry and Analytical ChemistryAcademy of Sciences of the USSRMoscow

Personalised recommendations