An autoradiographic study of neuroblast proliferation in the rhombencephalon of a reptile, Lacerta sicula

  • M. E. Schwab
  • M. Durand
  • M. Durand-Wenger
Article

Summary

Early ontogenetic events in the brain of a lizard, Lacerta sicula, were investigated by means of H3-thymidine autoradiography. Varying dynamic properties—beginning, duration, and end of the proliferating activity, dynamics of the generation cycle—of the matrix zones of different regions and areas of the brain were observed. The main interest was focused on the rhombencephalon, where a distinct heterochronism of proliferation was described for different systems and nuclear groups. Eye muscle nuclei, the trigeminal system, and the hypoglossal nucleus arrive earliest (stage day 1/2–1 1/2). The vestibular and the cochlear system cease their proliferation at stage day 2 1/2 and stage day 3 1/2 respectively. Their proliferation is very rapid. In contrast, the sensory regions of the VIIth, IXth, and Xth nerves and the tegmental regions show a slow, long-lasting proliferation.

The great difficulties for embryologic and experimental approach in reptiles are discussed.

Key words

Reptiles CNS Development Cell proliferation H3-thymidine autoradiography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brugal, G.: Etude autoradiographique de l'influence de la température sur la prolifération cellulaire chez les embryons âgés de Pleurodeles waltlii Michah. (Amphibien, Urodèle). Wilhelm Roux' Arch. 168, 205–225 (1971)Google Scholar
  2. Caley, D. W., Maxwell, D. S.: An electron microscopic study of neurons during postnatal development of the rat cerebral cortex. J. comp. Neurol. 133, 17–44 (1968)Google Scholar
  3. Cowan, W. M., Martin, A. H., Wenger, E.: Mitotic patterns in the optic tectum of the chick during normal development and after early removal of the optic vesicle. J. exp. Zool. 169, 71–92 (1968)Google Scholar
  4. Dufaure, J. P., Hubert, J.: Table de développement du lézard vivipare: Lacerta (Zootoca) vivipara Jacquin. Arch. Anat. micr. Morph. exp. 50, 309–327 (1961)Google Scholar
  5. Eichler, V. B.: Neurogenesis in the optic tectum of the larval Rana pipiens following unilateral enucleation. J. comp. Neurol. 141, 375–396 (1971)Google Scholar
  6. Fischer, H. A., Werner, G.: Autoradiographie. Berlin: de Gruyter, 1971Google Scholar
  7. Fleischhauer, K.: Untersuchungen am Ependym des Zwischen- und Mittelhirns der Landschildkröte (Testudo graeca). Z. Zellforsch. 46, 729–767 (1957)Google Scholar
  8. Fujita, S.: Analysis of neuron differentiation in the CNS by tritiated thymidine autoradiography. J. comp. Neurol. 122, 311–327 (1964)Google Scholar
  9. Fujita, S.: Applications of light and electron microscopic autoradiography to the study of cytogenesis of the forebrain. In: Evolution of the Forebrain (Hassler, R., Stephan, H., ed.), p. 180–196. Stuttgart: Thieme 1966Google Scholar
  10. Fujita, S., Miyake, S.: Selective labelling of cell groups and its application to cell identification. Exp. Cell Res. 28, 158–161 (1962)Google Scholar
  11. Hamburger, V., Hamilton, H. L.: A series of normal stages in the development of the chick embryo. J. Morph. 88, 49–92 (1951)Google Scholar
  12. Hendrickson, A., Moe, L., Noble, B.: Staining for autoradiography of the central nervous system. Stain Technol. 47, 283–290 (1972)Google Scholar
  13. Kahle, W.: Studien über die Matrixphasen und die örtlichen Reifungsunterschiede im embryonalen menschlichen Gehirn. Dtsch. Z. Nervenheilk. 166, 273–302 (1951)Google Scholar
  14. Kirsche, W.: Über postembryonale Matrixzonen im Gehirn verschiedener Vertebraten und deren Beziehung zur Hirnbauplanlehrel. Z. mikr.-anat. Forsch. 77, 313–406 (1967)Google Scholar
  15. Kranz, D., Richter, W.: Autoradiographische Untersuchungen zur DNS Synthese im Cerebellum und in der Medulla oblongata von Teleostiern verschiedenen Lebensalters. Z. mikr.-anat. Forsch. 82, 264–292 (1970)Google Scholar
  16. Kranz, D., Richter, W.: Autoradiographische Untersuchungen zur Regeneration des Tectum opticum von Lebistes reticulatus (Teleostei). Z. mikr.-anat. Forsch. 84, 420–428 (1971)Google Scholar
  17. Kuhlenbeck, H.: The central nervous system of vertebrates, vol. 3, part 1. Basel-New York: Karger 1971Google Scholar
  18. La Vail, J. H., Cowan, W. M.: Development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development. Brain Res. 28, 391–419 (1971)Google Scholar
  19. La Vail, J. H., Cowan, W. M.: Development of the chick optic tectum. II. Autoradiographic studies. Brain Res. 28, 421–441 (1971)Google Scholar
  20. Leonhardt, H.: Elektronenmikroskopische Untersuchung der postembryonalen ventralen Matrixzone des Kaninchengehirns. Z. mikr.-anat. Forsch. 85, 161–175 (1972)Google Scholar
  21. Peter, K.: Lacerta agilis. In: Normentafeln zur Entwiklungsgeschichte der Wirbeltiere (F. Keibel, ed.). Jena: Fischer 1904Google Scholar
  22. Pfister, C.: Die Matrixentwicklung in Mesencephalon und Rhombencephalon von Lampetra planeri (Bloch) (Cyclostomata) im Verlauf des Individualzyklus. J. Hirnforsch. 13, 377–383 (1971)Google Scholar
  23. Prestige, M. C.: Gradients in time of origin of tadpole motoneurons. Brain Res. 59, 400–404 (1973)Google Scholar
  24. Richter, W., Kranz, D.: Altersabhängigkeit der Aktivität der Matrixzonen im Gehirn von Xiphophorus helleri (Teleostei). Autoradiographische Untersuchung. J. Hirnforsch. 13. 109–116 (1971)Google Scholar
  25. Rogers, A. W.: Techniques of autoradiography. Amsterdam: Elsevier 1967)Google Scholar
  26. Sauer, M. E., Walker, B. E.: Radiographic study of interkinetic nuclear migration in the neural tube. Proc. Soc. exp. Biol. (N.Y.) 101, 557–560 (1959)Google Scholar
  27. Schmatolla, E.: Dependence of tectal neuron differentiation on optic innervation in teleost fish. J. Embryol. exp. Morph. 27, 555–576 (1972)Google Scholar
  28. Schmatolla, E., Erdmann, G.: Influence of retinotectal innervation on cell proliferation and cell migration in the embryonic teleost tectum. J. Embryol. exp. Morph. 29, 697–712 (1973)Google Scholar
  29. Schwab, M. E.: The cytoarchitecture of the rhombencephalon. In: The biology of the reptilia (C. Gans, R. G. Northcutt, ed.). London-New York: Academic Press (in press)Google Scholar
  30. Sidman, R. L.: Autoradiographic methods and principles for study of the nervous system with thymidine-H3. In: Contemporary research methods in neuroanatomy (W. J. H. Nauta, S. O. E. Ebbesson, ed.), p. 252–273. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  31. Taber, E.: Histogenesis of the brain stem neurons studied autoradiographically with thymidine-H3 in the mouse. Anat. Rec. 145, 291 (1963)Google Scholar
  32. Taber, E.: Histogenesis of brain stem neurons studied autoradiographically with thymidine-H3 in the mouse. Anat. Rec. 148, 344 (1964)Google Scholar
  33. Taber Pierce, E.: Histogenesis of the nuclei griseum pontis, corporis pontobulbaris and the reticularis tegmenti pontis (Bechterew) in the mouse. An autoradiographic study. J. comp. Neurol. 126, 219–240 (1966)Google Scholar
  34. Thurston, J. M., Joftes, D. L.: Stains compatible with dipping radioautography. Stain Technol. 38, 231–235 (1972)Google Scholar
  35. Waechter, R. v., Jaensch, B.: Generation times of the matrix cells during embryonic brain development: an autoradiographic study in rats. Brain Res. 46, 235–250 (1972)Google Scholar
  36. Wilson, D. B.: Distribution of thymidine-H3 in the overgrown brain of the chick embryo. J. comp. Neurol. 141, 37–51 (1971)Google Scholar
  37. Yntema, C. L.: A series of stages in the embryonic development of Chelydra serpentina. Cited from: Herpetology (K. R. Porter, ed.). Philadelphia: Saunders, 1972 (1968)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • M. E. Schwab
    • 1
    • 2
  • M. Durand
    • 1
  • M. Durand-Wenger
    • 2
  1. 1.Zoological Institute of the UniversityBaselSwitzerland
  2. 2.Dept. Pharmacology BiocenterUniversity of BaselBaselSwitzerland

Personalised recommendations