Feinbau und Passageverhalten der Capillaren im Subcommissuralorgan der Ratte

  • K. von Bomhard
  • W. Köhl
  • I. Schinko
  • R. Wetzstein
Article

Zusammenfassung

Die Capillaren des Subcommissuralorgans (SCO) und deren Umgebung wurden an 38 adulten Sprague-Dawley- und an 6 adulten Wistar-Ratten nach Perfusionsfixierung im Elektronenmikroskop untersucht. Saure Mucopolysaccharide wurden mit Alcianblau und Rutheniumrot, Glykoproteide mittels der Perjodsäure-Silbermethenamin-Reaktion nachgewiesen. Der Stofftransport in den Capillaren wurde mit Meerrettichperoxidase (MRP) als Tracer untersucht.

Die subcommissuralen Capillaren besitzen ein ungefenstertes, vesikelarmes Endothel, das einer einfachen, durchgehenden Basallamina aufsitzt. In der Umgebung der Capillaren finden sich neben periodisch strukturierten Körpern (PSK) vereinzelt Basallamina-Labyrinthe und regellos angeordnete kollagene Mikrofibrillen. Mit der Perjodsäure-Silbermethenamin-Reaktion lassen sich Glykoproteide im Bereich der Basallamina und der nach außen anschließenden Intercellularspalten darstellen, vereinzelt auch — teils im Bereich der Basallamina, teils ihr eng angeschlossen — Gruppen parallel angeordneter, linearer Strukturen mit einem periodischen Streifenmuster. Saure Mucopolysaccharide sind nur in der lumenseitigen Glykokalyx des Capillarendothels nachweisbar. Der Aufbau der PSK aus Kollagenfilamenten erscheint sehr wahrscheinlich. Vermutungen zur Entstehung dieser hochgeordneten Strukturen werden vorgebracht.

Die Traceruntersuchungen ergeben, daß unter normalen Bedingungen in den subcommissuralen Capillaren eine Blut-Hirn-Schranke (BHS) für MRP besteht, die im Endothel lokalisiert ist. Bei einem Teil der Sprague-Dawley-Ratten ist die Barriere geschädigt und der Tracer gelangt über cytopemptische Vesikel in Basallamina und Gefäßumgebung. Der Basallamina und den PSK kommt in solchen Fällen keine besondere Schranken- oder Verteilerfunktion zu. Offenbar bewirkt bei manchen Sprague-Dawley-Ratten die MRP-Injektion über die Freisetzung von endogenen biogenen Aminen aus Mastzellen eine Schädigung der BHS, was bei Wistar-Ratten nicht eintritt.

Ultrastructure and vascular permeability of the capillaries in the subcommissural organ of rats

Summary

The capillaries of the subcommissural organ (SCO) and their adjacent structures of 38 adult Sprague-Dawley rats and 6 adult Wistar rats were examined in the electron microscope after perfusion fixation. Acid mucopolysaccharides were shown by Alcian Blue and Ruthenium Red, glycoproteins were identified by the periodic acid-silver methenamine technique. Horseradish peroxidase (MRP) was used as a tracer for vascular permeability.

The subcommissural organ's capillaries are characterized by an unfenestrated, continuous endothelium, showing only few vesicles; the endothelium is surrounded by a single, continuous basal lamina. Adjacent to the capillaries wall there are “periodically structured bodies” (PSK), labyrinths of the basal lamina and irregularly arranged collagen fibrils. Glycoproteins are found in the basal lamina and within the intercellular clefts; in a few cases groups of parallel arranged, periodically banded linear structures are seen within or adjacent to the basal lamina. Acid mucopolysaccharides are found within the endocapillary layer of capillaries. It seems very likely that PSK represent an atypical arrangement of collagen fibrils. The formation of these structures is discussed.

Under normal conditions, MRP, after intravenous injection, does not enter the perivascular space surrounding the capillaries of the SCO. A blood-brain barrier exists at the level of the capillary endothelium. In a few Sprague-Dawley rats MRP seems to alter the permeability of the capillaries. Reaction product of MRP is found within endothelial vesicles and the adjacent structures. It appears that the basal lamina and the PSK are not involved in the barrier mechanism or regulation of transport. In Sprague-Dawley rats intravenous injection of MRP seems to alter the blood-brain barrier by release of endogenous biogenic amines associated with mast cell degranulation. This effect is not observed in Wistar rats.

Key words

Subcommissural organ Periodically structured bodies Vascular permeability Rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Andres, K. H.: Der Feinbau des Subfornikalorganes vom Hund. Z. Zellforsch. 68, 445–473 (1965)Google Scholar
  2. Becker, N. H., Novikoff, A. B., Zimmermann, H. M.: Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J. Histochem. Cytochem. 15, 160–165 (1967)Google Scholar
  3. Behnke, O., Zelander, T.: Preservation of intercellular substances by the cationic dye alcian blue in preparative procedures for electron microscopy. J. Ultrastruct. Res. 31, 424–438 (1970)Google Scholar
  4. Bodenheimer, T. S., Brightman, M. W.: A blood-brain barrier to peroxidase in capillaries surrounded by perivascular spaces. Amer. J. Anat. 122, 249–268 (1968)Google Scholar
  5. Bohman, S. O., Maunsbach, A. B.: Effects on tissue fine structure of variations in colloid osmotic pressure of glutaraldehyde fixatives. J. Ultrastruct. Res. 30, 195–208 (1970)Google Scholar
  6. Bomhard, K. von, Köhl, W., Schinko, I.: Gefäßpassage von Markierungsstoffen im Subcommissuralorgan der Ratte. Verh. Anat. Ges., 68. Vers. Lausanne 1973. Anat. Anz., Erg.-H. (im Druck)Google Scholar
  7. Booz, K. H., Desaga, U., Felsing, T., Franz, H., Stark, M.: Sub- und interependymale Basalmembranlabyrinthe am Zentralkanal der weißen Ratte. Z. Zellforsch. 132, 217–229 (1972)Google Scholar
  8. Bouteille, M., Pease, D. C.: The tridimensional structure of native collagenous fibrils, their proteinaceous filaments. J. Ultrastruct. Res. 35, 314–338 (1971)Google Scholar
  9. Breemen, V. L. van, Clemente, C. D.: Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope. J. biophys. biochem. Cytol. 1, 161–166 (1955)Google Scholar
  10. Brightman, M. W.: The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. Progr. Brain Res. 29, 19–37 (1968)Google Scholar
  11. Brightman, M. W., Klatzo, I., Olsson, Y., Reese, T. S.: The blood-brain barrier to proteins under normal and pathological conditions. J. neurol. Sci. 10, 215–239 (1970a)Google Scholar
  12. Brightman, M. W., Reese, T. S.: Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969)Google Scholar
  13. Brightman, M. W., Reese, T. S., Feder, N.: Assessment with the electron microscope of the permeability to peroxidase of cerebral endothelium and epithelium in mice and sharks. In: Capillary permeability (Alfred Benzon Symposium II) (C. Crone, N. A. Lassen, eds.), p. 468–476. New York: Acad. Press, 1980bGoogle Scholar
  14. Bruchhausen, F. von, Merker, H.-J.: Morphologischer und chemischer Aufbau isolierter Basalmembranen aus der Nierenrinde der Ratte. Histochemie 8, 90–108 (1967)Google Scholar
  15. Chen, H.-C., Lin, C.-S., Lien, I.-N.: Vascular permeability in experimental kernicterus. An electron microscopic study of the blood-brain barrier. Amer. J. Path. 51, 69–87 (1967)Google Scholar
  16. Clawson, C. C., Hartmann, J. F., Vernier, R. L.: Electron microscopy of the effect of gram negative endotoxin on the blood-brain barrier. J. comp. Neurol. 127, 183–198 (1966)Google Scholar
  17. Cotran, R. S., Karnovsky, M. J.: Vascular leakage induced by horseradish peroxidase in the rat. Proc. Soc. exp. Biol. (N.Y.) 126, 557–561 (1967)Google Scholar
  18. Cotran, R. S., Karnovsky, M. J., Goth, A.: Resistance of Wistar/Furth rats to the mast cell-damaging effect of horseradish peroxidase. J. Histochem. Cytochem. 16, 382–383 (1968)Google Scholar
  19. Dempsey, E. W.: Fine-structure of the rat's intercolumnar tubercle and ist adjacent ependyma and choroid plexus, with especial reference to the appearance of its sinusoidal vessels in experimental argyria. Exp. Neurol. 22, 568–589 (1968)Google Scholar
  20. Dempsey, E. W., Wislocki, G. B.: An electron microscopic study of the blood-brain barrier in the rat, employing silver nitrate as a vital stain. J. biophys. biochem. Cytol. 1, 245–256 (1955)Google Scholar
  21. Dretzki, J.: Licht- und elektronenmikroskopische Untersuchungen zum Problem der Blut-Hirn-Schranke circumventrikulärer Organe der Ratte nach der Behandlung mit Myofer. Z. Anat. Entwickl.-Gesch. 134, 278–297 (1971)Google Scholar
  22. Duvernoy, H., Koritké, J. G.: The vascular architecture of the subcommissural organ. In: Zirkumventrikuläre Organe und Liquor. Bericht über das Symposium in Schloß Reinhardsbrunn vom 13.–16. Mai 1968, S. 41–43. Jena: VEB G. Fischer 1969Google Scholar
  23. Farquhar, M. G., Palade, G. E.: Cell junctions in amphibian skin. J. Cell Biol. 26, 263 (1965)Google Scholar
  24. Gabbiani, G., Badonnel, M. C., Majno, G.: Intraarterial injections of histamine, serotonin, or bradykinin: a topographic study of vascular leakage. Proc. Soc. exp. Biol. (N.Y.) 135, 447–452 (1970)Google Scholar
  25. Giertz, H., Hahn, F.: Die anaphylaktoide Reaktion der weißen Ratte In: Handbuch der experimentellen Pharmakologie, Bd. 18/1 (Hrsg. O. Eichler u. A. Farah), S. 481–511. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  26. Goth, A.: Inhibition of anaphylactoid edema in the rat by 2-deoxy-glucose. Amer. J. Physiol. 197, 1056–1058 (1959)Google Scholar
  27. Graham, R. C., Karnovsky, M. J.: The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14, 291–302 (1966)Google Scholar
  28. Hashimoto, P. H., Hama, K.: An electron microscope study on protein uptake into brain regions devoid of the blood-brain barrier. Med. J. Osaka Univ. 18, 331–346 (1968)Google Scholar
  29. Hirano, A., Becker, N. H., Zimmermann, H. M.: Pathological alterations in the cerebral endothelial cell barrier to peroxidase. Arch. Neurol. (Chic.) 20, 300–308 (1969)Google Scholar
  30. Hirano, A., Becker N. H., Zimmermann, H. M.: The use of peroxidase as a tracer in studies of alterations in the blood-brain barrier. J. neurol. Sci. 10, 205–213 (1970)Google Scholar
  31. Holter, P.: Regular grid-like substructures in the midgut epithelial basement membrane of some coleoptera. Z. Zellforsch. 110, 373–385 (1970)Google Scholar
  32. Jakus, M.: Studies on the cornea. II. The fine structure of Descemet's membrane J. biophys. biochem. Cytol. 2 (Suppl.), 243–252 (1956)Google Scholar
  33. Joó, F.: Increased production of coated vesicles in the brain capillaries during enhanced permeability of the blood-brain barrier. Brit. J. exp. Path. 52, 646–649 (1971)Google Scholar
  34. Karnovsky, M. J.: Morphology of capillaries with special reference to muscle capillaries. In: Capillary permeability (Alfred Benzon Symposium II) (C. Crone, N. A. Lassen, eds.), p. 343–350. New York: Acad. Press 1970Google Scholar
  35. Köhl, W., Linderer, Th.: Zur Entwicklung des Subcommissuralorgans der Ratte. Morphologische und histochemische Untersuchungen. Histochemie 33, 349–368 (1973)Google Scholar
  36. Krstić, R.: Ultrastrukturelle Lokalisation von Mukosubstanzen der Zellhülle im Subcommissuralorgan der Ratte. Z. Zellforsch. 139, 237–252 (1973)Google Scholar
  37. Largiadèr, F.: The transplant. In: Organ transplantation (ed. F. Largiadèr), p. 154. Stuttgart: Thieme 1970Google Scholar
  38. Laurent, T. C.: The ultrastructure and physical-chemical properties of interstitial connective tissue. Pflügers Arch. 336, (Suppl.), S21-S42 (1972)Google Scholar
  39. Leonhardt, H.: Über die Blutkapillaren und perivaskulären Strukturen der Area postrema des Kaninchens und über ihr Verhalten im Pentamethylentetrazol-(Cardiazol-) Krampf. Z. Zellforsch. 76, 511–524 (1967)Google Scholar
  40. Leonhardt, H.: Über Hirnödem bei unterschiedlichen perikapillären Strukturen verschiedener Grisea des Kaninchens, hervorgerufen durch Pentamethylentetrazol (Cardiazol). Z. Zellforsch. 84, 199–218 (1968)Google Scholar
  41. Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961)Google Scholar
  42. Luft, J. H.: Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat. Rec. 171, 348–368 (1971a)Google Scholar
  43. Luft, J. H.: Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat. Rec. 171, 369–416 (1971b)Google Scholar
  44. Majno, G., Leventhal, M.: Pathogenesis of histamine-type vascular leakage. Lancet 1967 II, 99Google Scholar
  45. Majno, G., Palade, G. E.: Studies on inflammation: I. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J. biophys. biochem. Cytol. 11, 571–605 (1961a)Google Scholar
  46. Majno, G., Palade, G. E., Schoefl, G. I.: Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J. biophys. biochem. Cytol. 11, 607–626 (1961b)Google Scholar
  47. Majno, G., Shea, S. M., Leventhal, M.: Endothelial contraction induced by histamine-type mediators. J. Cell Biol. 42, 647–672 (1969)Google Scholar
  48. Manz, H. J., Robertson, D. M.: Vascular permeability to horseradish peroxidase in brain stem lesions of thiamine-deficient rats. Amer. J. Path. 66, 565–572 (1972)Google Scholar
  49. Merker, H. J., Struwe, K.: Elektronenmikroskopische Untersuchungen zum Problem der Sekretion der bindegewebigen Interzellularsubstanz. Z. Zellforsch. 115, 212–225 (1971)Google Scholar
  50. Møllgård, K.: Histochemical investigations on the human foetal subcommissural organ. I. Carbohydrates and mucosubstances, proteins and nucleoproteins, esterase, acid and alkaline phosphatase. Histochemie 32, 31–48 (1972)Google Scholar
  51. Murakami, M., Nakayama N., Tanaka, H.: Fine structure of the perivascular space of the Gecko japonicus subcommissural organ. Experientia (Basel) 25, 522–523 (1969)Google Scholar
  52. Papacharalampous, N. X., Schwink, A., Wetzstein, R.: Elektronenmikroskopische Untersuchungen am Subcommissuralorgan des Meerschweinchens. Z. Zellforsch. 90, 202–229 (1968)Google Scholar
  53. Rambourg, A.: An improved silver methenamine technique for the detection of periodic acid-reactive complex carbohydrates with the electron microscope. J. Histochem. Cytochem. 15, 409–412 (1967)Google Scholar
  54. Rambourg, A., Leblond, C. P.: Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cells in the rat. J. Cell Biol. 32, 27–53 (1967)Google Scholar
  55. Reese, T. S., Brightman, M. W.: Similarity in structure and permeability to peroxidase of epithelia overlying fenestrated cerebral capillaries. Anat. Rec. 160, 414 (Abstr.) (1968)Google Scholar
  56. Reese, T. S., Karnovsky, M. J.: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34, 207–217 (1967)Google Scholar
  57. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  58. Rohr, V. U.: Zum Feinbau des Subfornical-Organs der Katze. I. Der Gefäß-Apparat. Z. Zellforsch. 73, 246–271 (1966)Google Scholar
  59. Rowley, D. A.: Mast cell damage and vascular injury in the rat: an electron microscopic study of a reaction produced by thorotrast. Brit. J. exp. Path. 44, 284–290 (1963)Google Scholar
  60. Rudert, H., Schwink, A., Wetzstein, R.: Die Feinstruktur des Subfornikalorgans beim Kaninchen. I. Die Blutgefäße. Z. Zellforsch. 74, 252–270 (1966)Google Scholar
  61. Saunders, B. C.: Peroxidase. London: Butterworths 1964Google Scholar
  62. Schinko, I., Rohrschneider, I., Wetzstein, R.: Elektronenmikroskopische Untersuchungen am Subfornikalorgan der Maus. Z. Zellforsch. 123, 277–294 (1972)Google Scholar
  63. Schmidt, W. R., D'Agostino, A. N.: The subcommissural organ of the adult rabbit. Neurology (Minneap.) 16, 373–379 (1966)Google Scholar
  64. Schwink, A., Wetzstein, R.: Die Capillaren im Subcommissuralorgan der Ratte. Elektronenmikroskopische Untersuchungen and Tieren verschiedenen Lebensalters. Z. Zellforsch. 73, 56–88 (1966)Google Scholar
  65. Sparrow, E. M., Wilhelm, D. L.: Species differences in susceptibility to capillary permeability factors: histamine, 5-hydroxytryptamine and compound 48/80. J. Physiol. (Lond.) 137, 51–65 (1957)Google Scholar
  66. Stanka, P., Schwink, A., Wetzstein, R.: Elektronenmikroskopische Untersuchung des Subcommissuralorgans der Ratte. Z. Zellforsch. 63, 277–301 (1964)Google Scholar
  67. Terzakis, J. A.: Substructure in an epithelial basal lamina. J. Cell Biol. 35, 237–278 (1967)Google Scholar
  68. Weindl, A.: Verhalten der circumventriculären Organe des Kaninchens nach intravenöser Trypanblauzufuhr. Naturwissenschaften 54, 342 (1967)Google Scholar
  69. Weindl, A., Joynt, R. J.: Electron microscopic observations on the organum vasculosum of the lamina terminalis (OVLT) after intravenous injection of horseradish peroxidase. Neurology (Minneap.) 13, 295 (1969)Google Scholar
  70. Weindl, A., Joynt, R. J.: Barrier properties of the subcommissural organ. Arch. Neurol. (Chic.) 29, 16–22 (1973)Google Scholar
  71. Wetzstein, R., Schwink, A., Stanka, P.: Die periodisch strukturierten Körper im Subcomissuralorgan der Ratte. Z. Zellforsch. 61, 493–523 (1963)Google Scholar
  72. Wislocki, G. B., King, L. S.: The permeability of hypophysis and hypothalamus to vital dyes, with a study of the hypophyseal vascular supply. Amer. J. Anat. 58, 421–472 (1936)Google Scholar
  73. Wislocki, G. B., Leduc, E. H.: The cytology and histochemistry of the subcommissural organ and Reissner's fiber in rodents. J. comp. Neurol. 97, 515–543 (1952)Google Scholar
  74. Wolff, J.: Persönliche Mitteilung, 1973Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • K. von Bomhard
    • 1
  • W. Köhl
    • 1
  • I. Schinko
    • 1
  • R. Wetzstein
    • 1
  1. 1.Institut für Histologie und experimentelle Biologie der Universität MünchenMünchenDeutschland

Personalised recommendations