Theoretical and Experimental Chemistry

, Volume 17, Issue 6, pp 612–618 | Cite as

Applicability of the Hammond-Leffler postulate to reactions involving the ionization of aromatic CH acids

  • I. A. Romanskii
Article
  • 34 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. S. Hammond, “A correlation of reaction rates,” J. Am. Chem. Soc., 77, No. 1, 334–338 (1955).Google Scholar
  2. 2.
    J. E. Leffler and E. Grunwald, Rates and Equilibria in Organic Reactions, Wiley, New York (1963).Google Scholar
  3. 3.
    J. N. Brönsted and K. Pederson, “Die katalitische Zersetzung des Nitramids,” Z. Phys. Chem., 108, No. 2, 185–217 (1924).Google Scholar
  4. 4.
    R. A. Markus, “Theoretical relations among rate constant barriers and Brönsted slopes of chemical reactions,” J. Phys. Chem., 72, No. 3, 891–899 (1968).Google Scholar
  5. 5.
    A. O. Cohen and R. A. Markus, “On the slope of free energy plots in chemical kinetics,” J. Phys. Chem., 72, No. 12, 4249–4256 (1968).Google Scholar
  6. 6.
    V. G. Levich, E. D. German, R. R. Dogonadze, et al., “Quantum-statistical theory of homogeneous proton-transfer reactions,” Teor. Eksp. Khim., 6, No. 4, 451–461 (1970).Google Scholar
  7. 7.
    R. R. Dogonadze and A. M. Kuznetsov, Electrochemistry 1967 [in Russian], All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1969).Google Scholar
  8. 8.
    A. I. Shatenshtein, I. A. Romanskii, and I. O. Shapiro, “The differentiating effect of bases on the kinetic acidity of CH acids,” Reakts. Sposobn. Org. Soedin., 7, No. 2, 337–355 (1970).Google Scholar
  9. 9.
    C. D. Broaddus, “Homogeneous metallation of alkylbenzenes,” J. Org. Chem., 35, No. 1, 10–15 (1970).Google Scholar
  10. 10.
    I. O. Shapiro, Yu. I. Ranneva, I. A. Romanskii, and A. I. Shatenshtein, “Dependence of the coefficient ‘alpha’ in the Brönsted relationship on the protophilicity of bases in the ionization reactions of aryl and benzyl CH bonds of aromatic compounds,” in: Lectures at the All-Union Conference in Memory of Academician A. E. Favorskii [in Russian], Leningrad (1980), p. 92.Google Scholar
  11. 11.
    G. Häfelinger and A. Streitwieser, “Spektroskopische Auswirkungen von Methylsubstitutionen und unterschiedlichen o,o′-Ringverbruckungen bei Carbanionen des Diphenylmethyl und Triphenylmethyl-Typs,” Chem. Ber., 101, No. 3, 657–671 (1968).Google Scholar
  12. 12.
    C. D. Ritchie and R. E. Uschold, “Acidity in nonaqueous solvents. 6. Further studies of weak acids in dimethyl sulfoxide solution,” J. Am. Chem. Soc., 90, No.11, 2821–2824 (1968).Google Scholar
  13. 13.
    M. Szwarc, A. Streitwieser, and R. C. Mowery, Ions and Ion Pairs in Organic Chemistry, Wiley, New York (1974).Google Scholar
  14. 14.
    A. Streitwieser, R. Q. Caldwell, R. G. Lawler, and G. R. Ziegler, “Acidity of hydrocarbons. 20. Comparison of relative proton exchange rates of hydrocarbons with lithium cyclohexylamide and cesium cyclohexylamide,” J. Am. Chem. Soc., 87, No. 23, 5399–5402 (1965).Google Scholar
  15. 15.
    A. Streitwieser, P. J. Scannon, and H. M. Niemeyer, “Acidity of hydrocarbons. 49. Equilibrium ion pair acidities of fluorinated benzenes for cesium salts in cyclohexylamine. Extrapolation to pK benzene,” J. Am. Chem. Soc., 94, No. 22, 7936–7937 (1972).Google Scholar
  16. 16.
    A. Streitwieser and H. F. Koch, “Acidity of hydrocarbons. 10. Exchange rates of ring-substituted toluene-α-t's with lithium cyclohexylamide in cyclohexylamine,” J. Am. Chem. Soc., 86, No. 3, 404–409 (1964).Google Scholar
  17. 17.
    A. Streitwieser et al., “Acidity of hydrocarbons. 48. Kinetic acidities of mono-, di-, and triarylmethanes toward lithium cyclohexylamide,” J. Am. Chem. Soc., 95, No.13, 4257–4261 (1973).Google Scholar
  18. 18.
    A. I. Shatenshtein, “Hydrogen isotope exchange reactions of organic compounds in liquid ammonia,” Adv. Phys. Org. Chem., 1, 155–201 (1963).Google Scholar
  19. 19.
    I. O. Shapiro, Yu. I. Ranneva, and A. I. Shatenshtein, “Investigation of the dependence of the Brönsted coefficient on the protophilicity of the catalyst in the ionization reactions of the aromatic CH bonds of benzene and its derivatives,” Zh. Obshch. Khim., 49, No. 2030–2036 (1979).Google Scholar
  20. 20.
    C. D. Ritchie and R. E. Uschold, “Proton transfer in dipolar aprotic solvents. 3. Transfers from triphenylmethane in dimethyl sulfoxide solution,” J. Am. Chem. Soc., 89, No. 12, 2960–2963 (1967).Google Scholar
  21. 21.
    J. E. Hofmann, R. J. Muller, and A. Schriesheim, “Ionization rates of weak acids. 2. Base-catalyzed proton exchange between polyalkylbenzenes and tritiated dimethylsulfoxide,” J. Am. Chem. Soc., 85, No. 19, 3002–3005 (1963).Google Scholar
  22. 22.
    G. Gau and S. Marques, “Acidity of alkylarenes from the equilibria of their sodium salts,” J. Am. Chem. Soc., 98, No. 6, 1538–1541 (1976).Google Scholar
  23. 23.
    R. Bell, The Proton in Chemistry, Chapman and Hall, London (1973).Google Scholar
  24. 24.
    É. D. German and R. R. Dogonadze, “Quantum-mechanical theory of the kinetics of reactions of proton transfer,” in: R. P. Bell, The Proton in Chemistry, Chapman and Hall, London (1973).Google Scholar
  25. 25.
    J. Barltrop and J. D. Coyle, Excited State in Organic Chemistry, Wiley, New York (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • I. A. Romanskii
    • 1
  1. 1.Scientific-Research Institute of Organic Intermediates and DyesMoscow

Personalised recommendations