, Volume 26, Issue 1, pp 27–32 | Cite as

The displacement discontinuity method in the analysis of open cracks

  • Claudio Scavia


The application of the displacement discontinuity numerical technique to the solution of some problems of fracture mechanics is demonstrated in the hypothesis of homogeneous and elastic material. The fracture is supposed to be free from traction and is represented by a set of constant displacement discontinuity elements, except for two parabolic elements, located at each crack tip, in order to simulate the singularity of the solution near the crack tips. On the basis of the stress and displacement field determined by the displacement discontinuity method, the stress intensity factors for mode I and II are computed according to the method of the displacements. Three examples are provided to verify the validity of the formulation.

Key words

Open crack analysis displacement discontinuity method 


Lo scopo del presente lavore è di illustrare l'applicazione del metodo numerico della Displacement Discontinuity alla soluzione di alcuni problemi di meccanica della frattura, nell'ipotesi di materiale omogeneo ed elastico. La frattura è supposta aperta ed è rappresentata da una linea di elementi a discontinuità di spostamento costante, con l'eccezione di due speciali elementi parabolici, ubicati agli apici, al fine di simulare la singolarita' del campo tensionale. Sulla base del campo degli sforzi e degli spostamenti cosi determinati, vengono ricavati i fattori di concentrazione degli sforzi in modo I e II mediante il metodo degli spostamenti. Vengono inoltre riportati tre esempi di calcolo, effettuati al fine di verificare la validità del procedimento proposto.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barsoum, R. S., ‘On the use of isoparametric finite elements in linear fracture mechanics’, Int. J. Num. Meth. in Eng., 10, (1976) 25–38.Google Scholar
  2. 2.
    Cruse, T. A., ‘Boundary-integral equation fracture mechanics analysis’, Boundary-Integral Equation Method: Computational Applications in Applied Mechanics, ASME Appl. Mech. Sym. Series, AMD, 11 1975 31–48.Google Scholar
  3. 3.
    Cruse, T. A., ‘Two-dimensional BEM fracture mechanics analysis’, Appl. Math. Modelling, 2, (1978) 288–293.Google Scholar
  4. 4.
    Cruse, T. A. and Wilson, R. B., ‘Advanced applications of boundaryintegral equation methods’, Nucl. Eng. Design, 46 (1978) 2234–2244.Google Scholar
  5. 5.
    Cruse, T. A., Boundary Element Analysis in Computational Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, 1987.Google Scholar
  6. 6.
    Carpinteri, A., Valente, S., ‘Size-scale transition from ductile to brittle failure: a dimensional analysis approach’, CNRS-NSF Workshop on Strain Localization and Size Effect due to Cracking and Damage, Cachan, 1988, pp. 422–490.Google Scholar
  7. 7.
    Carpinteri, A., Valente, S. and Bocca, P., ‘Mixed mode cohesive crack propagation’, Seventh International Conference on Fracture, Houston, 1988, pp. 2243–2258.Google Scholar
  8. 8.
    Brandford, G. E., Ingraffea, A. R. and Ligget, J. A., ‘Two-dimensional stress intensity factor computations using the boundary element method’, Int. J. Num. Meth. in Eng., 17 (1981) 387–404.Google Scholar
  9. 9.
    Crouch, S. L. and Starfield, A. M., Boundary Element Methods in Solid Mechanics, George Allen and Unwin Publishers, London, 1983.Google Scholar
  10. 10.
    Crouch, S. L., ‘Solution of plane elastic problem by the displacements discontinuity method’, Int. J. Num. Meth. in Eng., 10 (1976) 301–343.Google Scholar
  11. 11.
    Carpinteri, A., Mechanical Damage and Crack Growth in Concrete, Martinus Nijhoff Publishers, Dordrecht, 1986.Google Scholar
  12. 12.
    Monegato, G., Calcolo numerico, Levrotto & Bella, Torino, 1985.Google Scholar
  13. 13.
    Tweed J. and Rooke, D. P., The distribution of stress near the tip of a radial crack at the edge of a circular hole’, Int. J. Eng. Sci., II 1973.Google Scholar
  14. 14.
    Murakami, Y., Stress Intensity Factors Handbook, Pergamon Press, Oxford 1987.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Claudio Scavia
    • 1
  1. 1.Dipartimento di Ingegneria StructuralePolitecnico di TorinoTorinoItaly

Personalised recommendations