Advertisement

Histochemistry

, Volume 72, Issue 2, pp 279–290 | Cite as

Über Romanowsky-Farbstoffe und den Romanowsky-Giemsa-Effekt

1. Mitteilung: Azur B, Reinheit und Gehalt von Farbstoffen, Assoziation
  • E. Zipfel
  • J.-R. Grezes
  • W. Seiffert
  • H. W. Zimmermann
Article

Zusammenfassung

Azur B ist der wichtigste Romanowsky-Farbstoff. Zusammen mit Eosin Y erzeugt er in Zellen den bekannten Romanowsky-Giemsa-Effket.

Käufliches Azur B ist im allgemeinen stark verunreinigt. Deshalb haben wir chemisch reines Azur B-BF4 hergestellt, das keine farbigen Verunreinigungen enthält. Es wurde zur Bestimmung des molaren Extinktionskoeffizienten \(\varepsilon (\tilde v)_M\) des monomeren Azur B in Ethanol verwendet. Im Maximum der längstwelligen Absorptionsbande bei \(\tilde v\)=15,61 kK (λ=641 nm) beträgt der Extinktionskoeffizient ɛ(15,61) M =(9,40±0,15)×104 M−1 cm−1. Er dient zur Standardisierung von Farbstoffproben.

In wäßriger Lösung bildet Azur B mit steigender Konzentration Dimere und höhere Assoziate. Die Dissoziationskonstante der Dimeren K=2,2×10−4 M (293 K) und die Absorptionsspektren der Monomeren und Dimeren in Wasser wurden aus der Konzentrationsabhägigkeit der Spektren iterativ bestimmt. Der molare Extinktionskoeffizient des Monomeren bei 15,47 kK (646 nm) beträgt 7,4×104 M−1 cm−1. Das Dimere hat zwei langwellige Absorptionsbanden bei 14,60 und 16,80 kK (685 und 595 nm) mit sehr verschiedenen Intensitäten, 2×104 und 13,5×104 M−1 cm−1. Das Spektrum des Dimeren in wäßriger Lösung steht mit theoretischen Überlegungen von Förster (1946) und Levinson et al. (1957) in Übereinstimmung. Es spricht für eine antiparallele Orientierung der Moleküle im Dimeren. Haben substratgebundene Dimere eine andere Bindungsgeometrie als in Lösung, ist mit einer Zunahme der Intensität der längstwelligen Absorption zu rechnen.

Romanowsky dyes and romanowsky-giemsa effect

1. Azure B, purity and content of dye samples, association

Summary

Azure B is the most important Romanowsky dye. In combination with eosin Y it produces the well known Romanowsky-Giemsa staining pattern on the cell. Usually commercial azure B is strongly contaminated. We prepared a sample of azure B-BF4 which was analytically pure and had no coloured impurities. The substance was used to redetermine the molar extinction coefficient \(\varepsilon (\tilde v)_M\) of monomeric azur B in alcoholic solution. In the maximum of the long wavelength absorption at \(\tilde v\)=15.61 kK (λ=641 nm) the absorptivity is ɛ(15.61) M =(9.40±0.15) ×104 M−1 cm−1. This extinction coefficient may be used for standardization of dye samples. In aqueous solution azur B forms dimers and even higher polymers with increasing concentration. The dissociation constant of the dimers, K=2,2×10−4 M (293 K), and the absorption spectra of pure monomers and dimers in water have been calculated from the concentration dependence of the spectra using an iterative procedure. The molar extinction coefficient of the monomers at 15.47 kK (646 nm) is ɛ(15.47) M =7.4×104 M−1 cm−1. The dimers have two long wavelength absorption bands at 14.60 and 16.80 kK (685 and 595 nm) with very different intensities 2×104 and 13.5×104 M−1 cm−1. The spectrum of the dimers in aqueous solution is in agreement with theoretical considerations of Förster (1946) and Levinson et al. (1957). It agrees with an antiparallel orientation of the molecules in the dimers. it may be that dimers bound to a substrate in the cell have another geometry than dimers in solution. In this case the weak long wavelength absorption of the dimers can increase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bergmann K, O'Konski CT (1963) A spectroscopic study of methylene blue monomer, dimer and complexes with montmorillonite. J Phys Chem 67:2169–2177Google Scholar
  2. Förster Th (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33:166–175Google Scholar
  3. Förster Th, König E (1957) Absorptionsspektren und Fluoreszenzeigenschaften konzentrierter Lösungen organischer Farbstoffe. Z Elektrochem 61:344–348Google Scholar
  4. Galbraith W, Marshall PN, Bacus JW (1980) Microspectrophotometric studies of Romanowsky stained blood cells. J Microsc 119:313–330Google Scholar
  5. Harms H (1957) Handbuch der Farbstoffe für die Mikroskopie. Vol 2. Staufen Verlag, Kamp-Lintorf, S 211Google Scholar
  6. Jutz Ch (1958) Private MitteilungGoogle Scholar
  7. Levinson GS, Simpson WT, Curtis W (1957) Electronic spectra of pyridocyanine dyes with assignments of transitions. J Am Chem Soc 79:4314–4320Google Scholar
  8. Lewis GN, Goldschnid O, Magel TT, Bigeleisen J (1943) Dimeric and other forms of methylene blue: Absorption and fluorescence of the pure monomer. J Am Chem Soc 65:1150–1154Google Scholar
  9. Loach KW (1971) Thin layer chromatography separation of methylene blue and related thiazine dyes. J Chromatogr 60:119–126Google Scholar
  10. Löhr W, Sohmer J, Wittekind D (1974) The azure dyes. Their purification and physiocochemical properties. I. Purification of azure A. Stain Technol 49:359–366Google Scholar
  11. Löhr W, Grubhofer N, Sohmer J, Wittekind D (1975) The azure dyes. Their purification and physicochemical properties. II. Purification of azure B. Stain Technol 50:143–147Google Scholar
  12. Lubrano GJ, Dean WW, Heinsohn HG, Stastny M (1977) The analysis of some commercial dyes and Romanowsky stains by high-performance liquid chromatography. Stain Technol 52:13–23Google Scholar
  13. Marshall PN, Lewis SM (1974a) The purification of methylene blue and azure B by solvent extraction and crystallization. Stain Technol 49:235–240Google Scholar
  14. Marshall PN, Lewis SM (1974b) Batch variation in commercial dyes embloyed for Romanowskytype staining: A thin layer chromatographic study. Stain Technol 49:351–358Google Scholar
  15. Marshall PN, Bentley SA, Lewis SM (1975a) An evaluation of some commercial Romanowsky stains. J Clin Pathol 28:680–685Google Scholar
  16. Marshall PN, Bentley SA, Lewis SM (1975b) A standardized Romanowsky stain prepared from purified dyes. J Clin Pathol 28:920–923Google Scholar
  17. Marshall PN, Lewis SM (1975c) A rapid thin layer chromatographic system for Romanowsky blood stains. Stain Technol 50:375–381Google Scholar
  18. Marshall PN (1978) Romanowsky-type stains in haematology. J Histochem 10:1–29Google Scholar
  19. Rabinowitch E, Epstein LF (1941) Polymerisation of dyestuffs in solution. Thionine and methylene blue. J Am Chem Soc 63:69–78Google Scholar
  20. Taylor KB (1960) Chromatographic separation and isolation of metachromatic thiazine dyes. J Histochem Cytochem 8:248–257Google Scholar
  21. Toepfer K (1970) Die Thiazinfarbstoffe. In: Graumann W, Lojda Z, Pearse AGE, Schiebler TH (eds). Progress in histochemistry and cytochemistry, vol. 1, Nr 5 Gustav Fischer, StuttgartGoogle Scholar
  22. Wittekind D, Löhr W (1975) Purification, standardization and quality control of Romanowsky dyes. In: Lewis SM, Coster FJ (eds) Quality control in haematology. Symposium of the International Committee for Standardization in Haematology. Chap. 12. Academic Press, LondonGoogle Scholar
  23. Wittekind D, Kretschmer V, Löhr W (1976) Kann Azur B-Eosin die May-Grünwald-Giemsa-Färbung ersetzen. Blut 32:71–78Google Scholar
  24. Wittekind D (1979) On the nature of Romanowsky dyes and Romanowsky Giemsa effect. Clin Lab Haematol 1:247–262Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • E. Zipfel
    • 1
  • J.-R. Grezes
    • 1
  • W. Seiffert
    • 1
  • H. W. Zimmermann
    • 1
  1. 1.Institut für Physikalische Chemie der Universität Freiburg i.Br.FreiburgFederal Republic of Germany

Personalised recommendations