International Journal of Thermophysics

, Volume 1, Issue 3, pp 243–284 | Cite as

The theory of the Taylor dispersion technique for liquid diffusivity measurements

  • A. Alizadeh
  • C. A. Nieto de Castro
  • W. A. Wakeham


This paper presents a complete analysis of the theory of an instrument to measure the diffusion coefficients in liquid mixtures based upon the phenomenon of Taylor dispersion. The analysis demonstrates that it is possible to design an instrument that operates very nearly in accordance with the simplest mathematical description of the dispersion of a solute pulse in a fluid in laminar flow within a straight, circular cross-section tube. The small departures of a practical instrument from the ideal are evaluated as corrections by means of a general perturbation treatment that allows them to be examined one at a time. The corrections considered include the effects of the finite volume of the injection pulse, the finite volume of the concentration monitor, the coiling of the tube, and the nonuniformity and noncircularity of the cross section, as well as the variation of the fluid properties with composition. All the equations necessary for the design of an instrument of this type, and for the evaluation of experimental data free from significant systematic errors, are presented.

Key words

diffusion coefficient liquid mixtures Taylor dispersion liquid diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. Treybal, Mass Transfer Operations, 2nd ed. (McGraw-Hill, New York, 1968).Google Scholar
  2. 2.
    B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53:3813 (1970).Google Scholar
  3. 3.
    E. R. Pike, Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds., NATO Advanced Study Institute Series (Plenum, London, 1974), p. 5.Google Scholar
  4. 4.
    H. J. V. Tyrrell and P. J. Watkiss, Ann. Rep. Chem. Soc., A, 35 (1976).Google Scholar
  5. 5.
    C. Durou, C. Moutou, and J. Makenc, J. Chim. Phys. 71:2171 (1974).Google Scholar
  6. 6.
    G. I. Taylor, Proc. Roy. Soc. A219:186 (1953).Google Scholar
  7. 7.
    A. C. Ouano, Ind. Eng. Chem. Fundam. 11:268 (1972).Google Scholar
  8. 8.
    K. C. Pratt and W. A. Wakeham, Proc. Roy. Soc. A336:393 (1974).Google Scholar
  9. 9.
    E. Grushka and V. R. Maynard, J. Phys. Chem. 77:1437 (1973).Google Scholar
  10. 10.
    K. C. Pratt, D. H. Slater, and W. A. Wakeham, Chem. Eng. Sci. 28:1901 (1973).Google Scholar
  11. 11.
    H. Komiyama and J. M. Smith, J. Chem. Eng. Data 19:384 (1974).Google Scholar
  12. 12.
    V. Hancil, V. Rod, and M. Rosenbaum, Chem. Eng. Commun. 3:155 (1979).Google Scholar
  13. 13.
    R. Aris, Proc. Roy. Soc. A235:67 (1956).Google Scholar
  14. 14.
    K. C. Pratt and W. A. Wakeham, Proc. Roy Soc. A342:401 (1975).Google Scholar
  15. 15.
    O. Levenspiel and W. K. Smith, Chem. Eng. Sci. 6:227 (1957).Google Scholar
  16. 16.
    T. Yano and T. Aratani, Seigyo Kogaku 12:18 (1968).Google Scholar
  17. 17.
    C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors (Marcel Dekker, New York, 1975).Google Scholar
  18. 18.
    D. J. McConalogue, Proc. Roy. Soc. A315:99 (1970).Google Scholar
  19. 19.
    M. E. Erdogan and P. C. Chatwin, J. Fluid Mech. 29:465 (1967).Google Scholar
  20. 20.
    R. J. Nunge, T. S. Lin, and W. N. Gill, J. Fluid Mech. 51:363 (1972).Google Scholar
  21. 21.
    L. A. M. Janssen, Chem. Eng. Sci. 31:215 (1976).Google Scholar
  22. 22.
    W. R. Dean, Phil. Mag. 5:673 (1928).Google Scholar
  23. 23.
    H. C. Topakoglu, J. Math. Mech. 16:1321 (1969).Google Scholar
  24. 24.
    H. Schlichting, Boundary Layer Theory, 6th ed. (McGraw-Hill, New York, 1968), Chapter VI.Google Scholar
  25. 25.
    E. Th. Van der Laan, Chem. Eng. Sci. 7:187 (1958).Google Scholar
  26. 26.
    M. R. Hopkins, Proc. Phys. Soc. 50:703 (1938).Google Scholar
  27. 27.
    N. G. Barton, J. Fluid Mech. 74:81 (1976).Google Scholar
  28. 28.
    N. G. Barton, J. Fluid Mech. 74:91 (1976).Google Scholar
  29. 29.
    R. Smith, J. Fluid Mech. 88:323 (1978).Google Scholar
  30. 30.
    W. A. Wakeham, Discuss. Farad. Soc. 15 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • A. Alizadeh
    • 1
  • C. A. Nieto de Castro
    • 1
  • W. A. Wakeham
    • 1
  1. 1.Department of Chemical Engineering and Chemical TechnologyImperial CollegeLondonEngland

Personalised recommendations