Skip to main content
Log in

Correlation of the transport properties of simple fluids at low temperatures and high pressures based on the generalized Eucken relation and the molecular dynamics of hard sphere fluid

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A generalized correlation is developed for the viscosity and thermal conductivity of isotropic fluids under high pressures (up to 200 MPa) and low temperatures (down to 85 K). Two known observations have been taken into consideration in the development of the correlation. First, the Alder correction factors for the Enskog theory values of transport coefficients obtained from molecular dynamics simulations for hard sphere fluids are incorporated. The inclusion of these corrections in the theory makes it possible to describe correctly the density dependence of the hard sphere viscosity and thermal conductivity at high pressures. The hydrodynamic “cage” effect, which is manifested in the molecular motions of dense fluid systems, is thus correctly accounted for. Second, the generalized Eucken relation, which relates the thermal conductivity to the viscosity, is incorporated. As a consequence, an internally consistent correlation is obtained, which can adequately predict the behavior of the thermal conductivity from given values of viscosity. Tests on simple fluids, such as argon, krypton, etc., show that the correlation is valid within a few percent for the entire fluid range where experimental data are available for comparison, and also along the vapor-liquid saturation line, with the exclusion of the critical region. Furthermore, since the variables appearing in the theory are in reduced form, a corresponding states correlation is established for isotropic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53:3813 (1970).

    Google Scholar 

  2. H. J. M. Hanley, R. D. McCarty, and E. G. D. Cohen, Physica, 60:322 (1972).

    Google Scholar 

  3. K. Gotoh, Ind. Eng. Chem. Fundamentals 15:180 (1976).

    Google Scholar 

  4. P. Protopapas, H. C. Andersen, and N. A. D. Parlee, J. Chem. Phys. 59:15 (1973).

    Google Scholar 

  5. J. H. Dymond, J. Chem. Phys. 60:969 (1974).

    Google Scholar 

  6. L. A. Woolf, J. Chem. Phys. 57:3013 (1972); 61:1600 (1974).

    Google Scholar 

  7. D. Chandler, J. Chem. Phys. 62:1358 (1975).

    Google Scholar 

  8. K. R. Harris, Physica 94A:448 (1978).

    Google Scholar 

  9. H. J. M. Hanley and E. D. G. Cohen, Physica, 83A:215 (1976).

    Google Scholar 

  10. H. L. Frisch and E. McLaughlin, J. Chem. Phys. 55:3706 (1971).

    Google Scholar 

  11. D. Levesque, L. Verlet, and J. Kürkijarvi, Phys. Rev. 7:1690 (1973).

    Google Scholar 

  12. D. J. Evans and W. B. Streett, Mol. Phys. 36:161 (1978).

    Google Scholar 

  13. D. Levesque and L. Verlet, Phys. Rev. 2:2514 (1970).

    Google Scholar 

  14. J. P. J. Michels and N. J. Trappeniers, Physica 90A:179 (1978).

    Google Scholar 

  15. K. C. Mo, and K. E. Starling, private communication (1976).

  16. J. O. Hirschfelder, J. O. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1965), p. 538.

    Google Scholar 

  17. A. L. Gosman, R. D. McCarty, and J. G. Hust, Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres (NBS Reference Data Series 27, 1969).

  18. C. H. Twu, L. L. Lee, and K. E. Starling, Fluid Phase Equilibria 4:35 (1980).

    Google Scholar 

  19. W. M. Haynes, Physica 67:440 (1973).

    Google Scholar 

  20. J. A. Gracki, G. P. Flynn, and J. Ross, J. Chem. Phys. 51:3856 (1969).

    Google Scholar 

  21. A. Michels, A. Botzen, and W. Schuurman, Physica 20:1141 (1954).

    Google Scholar 

  22. R. DiPippo and J. Kestin, Proc. 4th Symp. Thermophys Properties (ASME, New York, 1968), p. 304.

    Google Scholar 

  23. G. P. Flynn, R. V. Hanks, N. A. Lemaire, and J. Ross, J. Chem. Phys. 38:154 (1963).

    Google Scholar 

  24. J. Kestin, B. Paykoc, and J. V. Sengers, Physica, 54:1 (1971).

    Google Scholar 

  25. J. Kestin, S. T. Ro, and W. A. Wakeham, J. Chem. Phys. 56:4119 (1972).

    Google Scholar 

  26. F. A. Guevara, B. B. McInteer, and W. E. Wageman, Phys. Fluids 12:2493 (1969).

    Google Scholar 

  27. J. Hellemans, H. Zink, and O. Van Paemel, Physica 46:395 (1970).

    Google Scholar 

  28. E. G. Reynes and G. Thodos, Physica 30:1529 (1964).

    Google Scholar 

  29. J. Kestin and W. Leidenfrost, Physica, 25:1033 (1969).

    Google Scholar 

  30. Y. Saji and S. Kobayasi, Cryogenics 4:139 (1964).

    Google Scholar 

  31. V. A. Van Itterbeek, and O. Van Paemel, Physica, 8:133 (1941).

    Google Scholar 

  32. J. P. Boon, J. C. Legros, and G. Thomaes, Physica 33:547 (1967).

    Google Scholar 

  33. J. C. Legros and G. Thomaes, Physica 31:703 (1965).

    Google Scholar 

  34. A. Michels, J. V. Sengers, and L. J. M. Van de Klundert, Physica 29:149 (1963).

    Google Scholar 

  35. B. Le Neindre, R. Tufeu, P. Bury, P. Johannin, and B. Vodar, Thermal Conductivity Proc. Eighth Conf. (Plenum, New York, 1969), pp. 75–95.

    Google Scholar 

  36. J. R. Moszynski and B. P. Singh, Proc. 6th Symp. Thermophys. Properties (ASME, New York, 1973), p. 22.

    Google Scholar 

  37. J. Kestin and W. Wakeham, Proc. 5th Symp. Thermophys. Properties (ASME, New York, 1970), p. 55.

    Google Scholar 

  38. H. Ziebland and J. T. A. Burton, Br. J. Appl. Phys. 9:52 (1958).

    Google Scholar 

  39. H. J. M. Hanley, R. D. McCarty and W. M. Haynes, The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Argon, Krypton, Xenon, Nitrogen and Oxygen, J. Phys. Chem. Ref. Data 3(4): 979 (1974).

    Google Scholar 

  40. C. Y. Ho, R. M. Powell, and P. E. Liley, Thermal Conductivity of Selected Materials (NBS Reference Data Series 16, 1968).

  41. J. Naghizadeh and S. A. Rice, J. Chem. Phys. 36:2710 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, T.H., Lee, L.L. & Starling, K.E. Correlation of the transport properties of simple fluids at low temperatures and high pressures based on the generalized Eucken relation and the molecular dynamics of hard sphere fluid. Int J Thermophys 1, 397–416 (1980). https://doi.org/10.1007/BF00516566

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00516566

Key words

Navigation