Fresenius' Zeitschrift für analytische Chemie

, Volume 330, Issue 3, pp 246–249 | Cite as

Partition of supercritical n-pentane into SE-54 and SE-30 stationary phases in capillary supercritical fluid chromatography

  • Mustafa I. Selim
  • Joseph R. Strubinger
Lectures and Posters


The mass spectrometric tracer pulse (MSTP) chromatography method was used to measure the amount of supercritical n-pentane dissolved or adsorbed into SE-54 and SE-30 capillary columns. Partition data were measured above the critical point of n-pentane at temperatures from 200 ° to 300 °C and pressures between 35.04 and 54.42 atm. The data obtained provide evidence for mobile fluid solubility or adsorption into the stationary phase under the conditions of supercritical fluid chromatography (SFC). At 220 °C, solubility and/or adsorption of supercritical n-pentane decreases by increasing the pressure and reaches a minimum at approximately 45.00 atm. The effect of mobile-fluid pressure on its solubility or adsorption becomes limited at temperatures over 260 °C. This study demonstrates the unique experimental capabilities of the MSTPC method for quantitative measurement of the physico-chemical interaction of the complex multicomponent system encountered in SFC which is not possible by any other technique. An innovative instrumental design for modification of GC/MS systems for SFC, GC/MS operation is also described.


Inorganic Chemistry Stationary Phase Quantitative Measurement Capillary Column Chromatography Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Verteilung von superkritischem n-Pentan in den stationären Phasen SE-54 und SE-30 bei der Capillar-Chromatographie mit superkritischen fluiden Phasen


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klesper E, Corwin AH, Turner DA (1962) J Org Chem 27:700Google Scholar
  2. 2.
    Myers MN, Giddings JC (1966) Sep Sci 1:761–776Google Scholar
  3. 3.
    McLaren L, Myers MN, Giddings JC (1968) Science 159:197–199Google Scholar
  4. 4.
    Giddings JC, Myers MN, McLaren L, Keller RA (1968) Science 162:67–73Google Scholar
  5. 5.
    Sie ST, Van Beersum W, Rijnders GWA (1966) Sep Sci 1:459–490Google Scholar
  6. 6.
    Sie ST, Rijnders GWA (1967) Sep Sci 2:729–753Google Scholar
  7. 7.
    Sie ST, Rijnders GWA (1967) Sep Sci 2:755–777Google Scholar
  8. 8.
    Novotny M, Springston SR, Peaden PA, Fjeldsted JC, Lee ML (1981) Anal Chem 53:407A-414AGoogle Scholar
  9. 9.
    Springston SR, David P, Steger J, Novotny M (1986) Anal Chem 58:997–1002Google Scholar
  10. 10.
    Peaden PA, Fjeldsted JC, Lee ML, Springston SR, Novotny M (1982) Anal Chem 54:1090–1093Google Scholar
  11. 11.
    Peaden PA, Lee ML (1984) J Chromatogr 259:1–16Google Scholar
  12. 12.
    Peaden PA, Lee ML (1982) J Liq Chromatogr 5:179Google Scholar
  13. 13.
    Fjeldsted JC, Lee ML (1984) Anal Chem 56:619A-628AGoogle Scholar
  14. 14.
    Smith RD, Kalinoski HT, Udseth HR, Wright BW (1984) Anal Chem 56:2476–2480Google Scholar
  15. 15.
    Smith RD, Udseth HR (1983) Biomed Mass Spectrom 10:577–580Google Scholar
  16. 16.
    Smith RD, Udseth HR, Wright BW (1985) J Chromatogr Sci 23:192–199Google Scholar
  17. 17.
    Smith RD, Udseth HR (1983) Anal Chem 55:2266–2272Google Scholar
  18. 18.
    Smith RD, Fjeldsted JC, Lee ML (1982) J Chromatogr Sci 247:231–243Google Scholar
  19. 19.
    Smith RD, Wright BW, Udseth HR (1984) In: Lyon WS (ed) Analytical spectroscopy. Elsevier, New YorkGoogle Scholar
  20. 20.
    Conaway JE, Graham JA, Rogers LB (1978) J Chromatogr Sci 16:102–110Google Scholar
  21. 21.
    Klesper E (1978) Angew Chem Int Ed Engl 17:738–746Google Scholar
  22. 22.
    Fjeldsted JC, Jackson WP, Peaden PA, Lee ML (1983) J Chromatogr Sci 21:222–225Google Scholar
  23. 23.
    Hirata Y, Nakata F (1984) J Chromatogr 295:315–322Google Scholar
  24. 24.
    Later DW, Richter BE, Knowles DE, Andersen MR (1986) J Chromatogr Sci 24:249–253Google Scholar
  25. 25.
    Hawthorne SB, Miller D (1986) J Chromatogr Sci 24:258–264Google Scholar
  26. 26.
    Gouw TH, Jentoff RE (1975) Adv Chromatogr 13:1–40Google Scholar
  27. 27.
    Schoemakers PJ (1984) J Chromatogr 315:1–18Google Scholar
  28. 28.
    Rawdon MG, Norris TA (1984) Am Lab 16:17–23Google Scholar
  29. 29.
    Randall LG (1982) Sep Sci Technol 17:1–118Google Scholar
  30. 30.
    Parcher JF (1983) J Chromatogr Sci 21:346–351Google Scholar
  31. 31.
    Billie AL, Griebrokk T (1985) Anal Chem 57:2239–2242Google Scholar
  32. 32.
    Hirata Y (1984) J Chromatogr 315:31–37Google Scholar
  33. 33.
    Levy JM, Ritchey WM (1986) J Chromatogr Sci 24:242–248Google Scholar
  34. 34.
    Parcher JF, Selim MI (1979) Anal Chem 51:2154–2156Google Scholar
  35. 35.
    Wright BW, Peaden PA, Lee ML, Stark TJ (1982) J Chromatogr 248:17–34Google Scholar
  36. 36.
    Guardino S, Albaiges J, Firpo G, Rodriguez-Vinals R, Gassiot M (1976) J Chromatogr 118:13–22Google Scholar
  37. 37.
    Peterson DL, Helfferich F (1965) J Phys Chem 69:1283–1293Google Scholar
  38. 38.
    Selim MI (1981) Mass spectrometric tracer pulse chromatography — A new technique for studying multicomponent gassolid and gas-liquid equilibria. PhD dissertation, University of MississippiGoogle Scholar
  39. 39.
    Selim MI, Parcher JF, Lin PJ (1982) J Chromatogr 239:411–421Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Mustafa I. Selim
    • 1
  • Joseph R. Strubinger
    • 1
  1. 1.Department of ChemistryMurray State UniversityMurrayUSA

Personalised recommendations