Skip to main content
Log in

Accurate thermal conductivity coefficients for argon based on a state-of-the-art interatomic potential

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An accurate interatomic potential was constructed by fitting a realistic function, constrained by theory, to a set of judiciously selected macroscopic and microscopic properties but not including thermal conductivity. Using this potential, accurate values of thermal conductivity of argon are obtained for the temperature range 100 to 6600 K. These are presented in tabular form as well as in terms of a correlation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Aziz and M. J. Slaman, Mol. Phys. 58:679 (1986).

    Google Scholar 

  2. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley and Sons, New York, 1954).

    Google Scholar 

  3. A. Cavers, K. Chung, and H. N. Powell, Proceedings of the 13th International Symposium on Shock Tubes and Waves, Niagara Falls, p. 297 (1981).

  4. D. J. Collins and W. A. Menard, J. Heat Transfer 88:52 (1966).

    Google Scholar 

  5. T. Hoshino, K. Mito, A. Nagashima, and M. Miyata, Int. J. Thermophys. 7:647 (1986).

    Google Scholar 

  6. R. A. Aziz, in Inert Gases, M. L. Klein, ed. (Springer, Berlin, 1984), pp. 5–86.

    Google Scholar 

  7. M. Klein and H. J. M. Hanley, J. Chem. Phys. 53:4722 (1970).

    Google Scholar 

  8. R. A. Aziz and H. H. Chen, J. Chem. Phys. 67:5719 (1977).

    Google Scholar 

  9. R. Ahlrichs, P. Penco, and G. Scoles, Chem. Phys. 19:119 (1977).

    Google Scholar 

  10. A. Kumar and W. J. Meath, Mol. Phys. 54:823 (1985).

    Google Scholar 

  11. K. T. Tang, J. M. Norbeck, and P. R. Certain, J. Chem. Phys. 64:3063 (1976).

    Google Scholar 

  12. A. J. Thakkar and V. H. Smith, Jr., J. Phys. B7:L321 (1974).

    Google Scholar 

  13. E. A. Colbourn and A. E. Douglas, J. Chem. Phys. 65:1741 (1976).

    Google Scholar 

  14. A. Michels, Hub. Wijker, and Hk. Wijker, Physica 15:627 (1949).

    Google Scholar 

  15. A. Michels, J. M. Levelt, and W. de Graaff, Physica 24:659 (1958).

    Google Scholar 

  16. E. Vogel, Ber. Bunsenges Phys. Chem. 88:997 (1984).

    Google Scholar 

  17. P. J. Hay, R. T. Pack, and R. L. Martin, J. Chem. Phys. 81:1360 (1984).

    Google Scholar 

  18. H. O'Hara and F. J. Smith, Comput. Phys. Commun. 2:47 (1971).

    Google Scholar 

  19. P. D. Neufeld and R. A. Aziz, Comput. Phys. Commun. 3:269 (1972).

    Google Scholar 

  20. S. L. Price, Comput. Phys. Commun. 19:271 (1980).

    Google Scholar 

  21. H. J. M. Hanley, J. Phys. Chem. Ref. Data 2:619 (1974).

    Google Scholar 

  22. J. T. R. Watson, National Engineering Laboratory, East Kilbride, Glasgow, Report No. 488 (1971).

  23. J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, J. Phys. Chem. Ref. Data 13:229 (1984).

    Google Scholar 

  24. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, 2 ed. (John Wiley and Sons, New York, 1975).

    Google Scholar 

  25. I. Amdur and E. A. Mason, Phys. Fluids 1:370 (1958).

    Google Scholar 

  26. N. K. Kalfoglou and J. G. Miller, J. Phys. Chem. 71:1256 (1967).

    Google Scholar 

  27. L. Holborn and J. Otto, Z. Phys. 33:1 (1925).

    Google Scholar 

  28. E. Whalley, Y. Lupien, and W. G. Schneider, Can. J. Chem. 31:722 (1953).

    Google Scholar 

  29. B. E. F. Fender and G. D. Halsey, Jr., J. Chem. Phys. 36:1881 (1962).

    Google Scholar 

  30. B. Najafi, E. A. Mason, and J. Kestin, Physica 119A:387 (1983).

    Google Scholar 

  31. R. Hahn, K. Schafer, and B. Schramm, Ber. Bunsenges Phys. Chem. 78:287 (1974).

    Google Scholar 

  32. H.-P. Rentschler and B. Schramm, Ber. Bunsenges Phys. Chem. 81:319 (1977).

    Google Scholar 

  33. B. Schramm, H. Schmiedel, R. Gehrmann, and R. Bartl, Ber. Bunsenges Phys. Chem. 81:316 (1977).

    Google Scholar 

  34. B. Schramm and U. Hebgen, Chem. Phys. Lett. 29:137 (1974).

    Google Scholar 

  35. A. G. Clarke and E. B. Smith, J. Chem. Phys. 48:3988 (1968).

    Google Scholar 

  36. A. G. Clarke and E. B. Smith, J. Chem. Phys. 51:4156 (1969).

    Google Scholar 

  37. R. A. Dawe and E. B. Smith, J. Chem. Phys. 52:693 (1970).

    Google Scholar 

  38. J. Kestin, R. Paul, A. A. Clifford, and W. Wakeham, Physica 100A:349 (1980).

    Google Scholar 

  39. F. A. Guevara, B. B. McInteer, and W. E. Wageman, Phys. Fluids 12:2493 (1969).

    Google Scholar 

  40. N. B. Vargaftik and N. Kh. Zimina, Teplofiz. Vys. Temp. 2:716 (1964).

    Google Scholar 

  41. G. S. Springer and E. W. Wingeier, J. Chem. Phys. 59:2747 (1973).

    Google Scholar 

  42. S. H. P. Chen and S. C. Saxena, Mol. Phys. 29:455 (1975).

    Google Scholar 

  43. H. F. Vugts, A. J. H. Boerboom, and J. Los, Physica 44:219 (1969).

    Google Scholar 

  44. J. M. Parson, P. E. Siska, and Y. T. Lee, J. Chem. Phys. 56:1511 (1972).

    Google Scholar 

  45. J. J. van den Biesen, R. M. Hermans, and C. J. N. van den Meijdenberg, Physica 115A:396 (1982).

    Google Scholar 

  46. J. W. Haarman, AIP Conf. Proc. 11:193 (1973).

    Google Scholar 

  47. B. LeNeindre, Int. J. Heat Mass Transfer 15:1 (1972).

    Google Scholar 

  48. M. J. Assael and W. A. Wakeham, J. Chem. Soc. Faraday Trans. I 78:185 (1982).

    Google Scholar 

  49. E. N. Haran, G. C. Maitland, M. Mustafa, and W. A. Wakeham, Ber. Bunsenges Phys. Chem. 87:657 (1983).

    Google Scholar 

  50. U. V. Mardolcar, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 7:259 (1986).

    Google Scholar 

  51. B. Stefanov, J. Chem. Phys. 63:2258 (1975).

    Google Scholar 

  52. A. Hirschberg, Doctoral dissertation (Einhoven University of Technology, 1981).

  53. K. S. Touloukian, P. E. Liley, and S. C. Saxena, Thermophysical Properties of Matter, Vol. 3. Thermal Conductivity—Nonmetallic Liquids and Gases (IFI/Plenum, New York, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aziz, R.A. Accurate thermal conductivity coefficients for argon based on a state-of-the-art interatomic potential. Int J Thermophys 8, 193–204 (1987). https://doi.org/10.1007/BF00515202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00515202

Key Words

Navigation