Advertisement

Complexes of metallochromic substances. V

Optimum conditions for metal complex formation and their relation to the complex composition
  • B. Buděšínský
Originalabhandlungen

Summary

The general equation of optimum metal complex formation makes possible the description of the optimum conditions of existence for every assumed metal complex composition. This equation was applied to metal complexes of EDTA, xylenol orange, methylthymol blue, pyrocatechol violet, eriochrome black T, arsenazo I, and arsenazo III. The results obtained are in good accordance with practical experiences. Theoretical conclusions have shown the impossibility of the existence of an universal optimum spectrophotometric reagent for the determination of metals.

Keywords

Metal Complex General Equation Practical Experience Good Accordance Complex Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Die allgemeine Gleichung der optimalen Komplexbildung ermöglicht es, jeder angenommenen Zusammensetzung des gebildeten Metallkomplexes entsprechende optimale Bildungsbedingungen zuzuschreiben. Diese Gleichung wurde für Metallkomplexe von ÄDTA, Xylenolorange, Methylthymolblau, Brenzcatechinviolett, Eriochromschwarz T, Arsenazo I und Arsenazo III angewendet. Die erhaltenen Ergebnisse stimmten gut mit der praktischen Erfahrungüberein. Die theoretischen Folgerungen haben erwiesen, daß es allgemeine, optimale, spektralphotometrische Reagentien für Metallbestimmungen nicht geben kann.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biedermann, G.: Arkiv Kemi 5, 441 (1952).Google Scholar
  2. 2.
    Biedermann, G.: Arkiv Kemi 9, 175 (1956).Google Scholar
  3. 3.
    Biedermann, G.: Arkiv Kemi 9, 277 (1956).Google Scholar
  4. 4.
    Biedermann, G., and L. Ciavatta: Acta chem. scand. 15, 1347 (1961).Google Scholar
  5. 5.
    Biedermann, G., and L. Ciavatta: Acta chem. scand. 16, 2221 (1962).Google Scholar
  6. 6.
    Biedermann, G., and S. Hietanen: Acta chem. scand. 14, 711 (1960).Google Scholar
  7. 7.
    Biedermann, G., M. Kilpatrick, L. Pokras, and L. G. Sillén: Acta. chem. scand. 10, 1327 (1956).Google Scholar
  8. 8.
    Brosset, C., G. Biedermann, and L. G. Sillén: Acta chem. scand. 8, 1917 (1954).Google Scholar
  9. 9.
    Buděšínský, B.: Z. analyt. Chem. 195, 244 (1963).Google Scholar
  10. 10.
    Buděšínský, B.: Z. analyt. Chem. 206, 401 (1964).Google Scholar
  11. 11.
    Budešínský, B.: Z. analyt. Chem. 206, 262 (1964).Google Scholar
  12. 12.
    Buděšínský, B. Unpublished results.Google Scholar
  13. 13.
    Buděšínský, B., u. K. Haas: Z. analyt. Chem. (in press).Google Scholar
  14. 14.
    Carell, B., and A. Olin: Acta chem. scand. 15, 727 (1961).Google Scholar
  15. 15.
    Carell, B., and A. Olin: Acta chem. scand. 15, 1875 (1961).Google Scholar
  16. 16.
    Čůta, F., Z. Ksandr, and M. Hejtmánek: Chem. Listy 50, 1064 (1956).Google Scholar
  17. 17.
    Dyrssen, D., and T. Sekine: Acta chem. scand. 15, 399 (1961).Google Scholar
  18. 18.
    Hedström, B. O. A.: Arkiv Kemi 5, 457 (1953).Google Scholar
  19. 19.
    Hedström, B. O. A.: Arkiv Kemi 6, 1 (1954).Google Scholar
  20. 20.
    Hietanen, S.: Acta chem. scand. 10, 1531 (1956).Google Scholar
  21. 21.
    Hietanen, S.: Rec. Trav. chim. Pays-Bas 75, 711 (1956).Google Scholar
  22. 22.
    Hietanen, S., B. R. L. Row, and L. G. Sillén: Acta chem. scand. 17, 2735 (1963).Google Scholar
  23. 23.
    Hietanen, S., and L. G. Silkén: Acta chem. scand. 6, 747 (1952).Google Scholar
  24. 24.
    Körbl, J., and B. Kakáč: Chem. Listy 51, 168 (1957).Google Scholar
  25. 25.
    Krevinskaja, M. E., V. D. Nikolskij, B. G. Pozharskij u. E. E. Zastenker: Radiochimija 1, 548 (1959).Google Scholar
  26. 26.
    Kutejnikov, A. T.: Zavodskaja Laborat. 28, 1179 (1962).Google Scholar
  27. 27.
    Lewis, D.: Acta chem. scand. 17, 1891 (1963).Google Scholar
  28. 28.
    Merller, T., and G. L. King: J. Phys. Colloid. Chem. 54, 999 (1950).Google Scholar
  29. 29.
    Olin, A.: Acta chem. scand. 11, 1445 (1957).Google Scholar
  30. 30.
    Olin, A.: Acta chem. scand. 14, 126 (1960).Google Scholar
  31. 31.
    Podestá, J. J.: Rev. Fac. Cienc. quím., Univ. nacl. La Plata 30, 61 (1957).Google Scholar
  32. 32.
    Řehák, B., u. J. Körbl: Collect. czechoslov. chem. Commun. 25, 797 (1960).Google Scholar
  33. 33.
    Rossotti, F. J. C., and H. S. Rossotti: Acta chem. scand. 9, 1177 (1955).Google Scholar
  34. 34.
    Rossotti, F. J. C., and H. S. Rossotti: The Determination of Stability Constants. New York: McGraw-Hill 1961.Google Scholar
  35. 35.
    Ryba, O., J. Cífka, M. Malát, and V. Suk: Chem. Listy 49, 1786 (1955).Google Scholar
  36. 36.
    Schläfer, H. L.: Komplexbildung in Lösung. Berlin, Göttingen, Heidelberg: Springer 1961.Google Scholar
  37. 37.
    Schwarzenbach, G., and W. Biedermann: Helv. chim. Acta 31, 678 (1948).Google Scholar
  38. 38.
    Schwarzenbach, G., R. Gut, and G. Anderegg: Helv. chim. Acta 37, 937 (1954).Google Scholar
  39. 39.
    Sillén, L. G.: Quart. Rev. (Chem. Soc. London) 13, 146 (1959).Google Scholar
  40. 40.
    Solovkin, A. S.: Ž. neorg. Chim. 2, 611 (1957).Google Scholar
  41. 41.
    Tobias, R. S.: Acta chem. scand. 12, 198 (1958).Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • B. Buděšínský
    • 1
  1. 1.The Nuclear Research Institute of Czechoslovak Academy of SciencesŘež u Prahy

Personalised recommendations