Skip to main content
Log in

Thermal conductivity of liquid n-alkanes

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity of liquids has been shown in the past to be difficult to predict with a reasonable accuracy, due to the lack of accurate experimental data and reliable prediction schemes. However, data of a high accuracy, and covering wide density ranges, obtained recently in laboratories in Boulder, Lisbon, and London with the transient hot-wire technique, can be used to revise an existing correlation scheme and to develop a new universal predictive technique for the thermal conductivity of liquid normal alkanes. The proposed correlation scheme is constructed on a theoretically based treatment of the van der Waals model of a liquid, which permits the prediction of the density dependence and the thermal conductivity of liquid n-alkanes, methane to tridecane, for temperatures between 110 and 370 K and pressures up to 0.6 MPa, i.e., for 0.3⩽T/T c⩽0.7 and 2.4⩽P/P c⩽3.7, with an accuracy of ±1%, given a known value of the thermal conductivity of the fluid at the desired temperature. A generalization of the hard-core volumes obtained, as a function of the number of carbon atoms, showed that it was possible to predict the thermal conductivity of pentane to tetradecane±2%, without the necessity of available experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Sengers and M. Klein (eds.), NBS Special Publication No. 590 (1980).

  2. D. Zudkevitch, Hydroc. Proc. 54:97 (1975).

    Google Scholar 

  3. D. Zudkevitch, in Encyclopedia of Chemical Processing and Design, Vol. 14 (Marcel Decker, New York, 1982), p. 431.

    Google Scholar 

  4. C. C. Williams and M. A. Albright, Hydroc. Proc. 55:115 (1976).

    Google Scholar 

  5. R. S. Mah, Comp. Chem. Eng. 1:183 (1977).

    Google Scholar 

  6. L. C. Yen, J. F. S. Frith, K. C. Chao, and H. M. Lin, Chem. Eng. 84:127 (1977).

    Google Scholar 

  7. J. M. Prausnitz, Science 205:759 (1979).

    Google Scholar 

  8. M. J. Assael, C. A. Nieto de Castro, and W. A. Wakeham, in Proc. Int. Chem. Eng. Conf., CHEMPOR 78, Braga, Portugal (1978).

  9. A. J. Mendonça, M. J. Assael, C. A. Nieto de Castro, and W. A. Wakeham, Rev. Port. Quim. 23:7 (1981).

    Google Scholar 

  10. J. B. Amstrong, S. F. Y. Li, and W. A. Wakeham, ASME Annual Winter Meeting, Phoenix, Arizona (1982).

  11. M. L. S. Matos Lopes, C. A. Nieto de Castro, and W. A. Wakeham, in Proc. Int. Chem. Eng. Conf., CHEMPOR 85, Coimbra, Portugal (1985).

  12. C. A. Nieto de Castro and W. A. Wakeham, in Proc. 1st CODATA Symp. Chem. Thermodynam. Thermophys. Prop. Data Bases, Paris, France (1985).

  13. W. A. Wakeham, in Transport Properties of Fluids and Fluid Mixtures (HMSO, Edinburg, 1980).

    Google Scholar 

  14. C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Tengrove, and W. A. Wakeham, J. Phys. Chem. Ref. Data 15:1073 (1986).

    Google Scholar 

  15. J. H. Dymond, Physica 75:100 (1974).

    Google Scholar 

  16. J. H. Dymond and T. A. Brawn, in Transport Properties of Fluids and Fluid Mixtures (HMSO, Edinburg, 1980).

    Google Scholar 

  17. J. H. Dymond, Chem. Soc. Rev. 3:317 (1985).

    Google Scholar 

  18. B. J. Alder and T. E. Wainwright, Phys. Rev. Lett. 18:988 (1967).

    Google Scholar 

  19. J. Menashe, M. Mustafa, M. Sage, and W. A. Wakeham, in Proc. 8th Symp. Thermophys. Prop., J. V. Sengers, ed. (ASME, New York, 1982).

    Google Scholar 

  20. J. C. G. Calado, U. V. Mardolcar, C. A. Nieto de Castro, H. M. Roder, and W. A. Wakeham, Physica 143A:314 (1987).

    Google Scholar 

  21. C. A. Nieto de Castro, S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, Int. J. Thermophys. 4:311 (1983).

    Google Scholar 

  22. H. M. Roder, Int. J. Thermophys. 6:119 (1985).

    Google Scholar 

  23. U. V. Mardolcar and C. A. Nieto de Castro, Ber. Bunsenges. Phys. Chem. 91:152 (1987).

    Google Scholar 

  24. H. M. Roder and C. A. Nieto de Castro, High Temp. High Press. 17:453 (1985).

    Google Scholar 

  25. H. M. Roder and C. A. Nieto de Castro, J. Chem. Eng. Data 27:12(1982).

    Google Scholar 

  26. C. A. Nieto de Castro, R. Tufeu, and B. le Neindre, Int. J. Thermophys. 4:11 (1983).

    Google Scholar 

  27. A. M. F. Palavra, W. A. Wakeham, and M. Zalaf, Int. J. Thermophys. 8:305 (1987).

    Google Scholar 

  28. S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 88:32 (1984).

    Google Scholar 

  29. J. Menashe and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 85:340 (1981).

    Google Scholar 

  30. J. Menashe and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 86:541 (1982).

    Google Scholar 

  31. M. Mustafa, M. Sage, and W. A. Wakeham, Int. J. Thermophys. 3:217 (1982).

    Google Scholar 

  32. J. H. Dymond and R. Malhotra, Int. J. Thermophys. 8:541 (1987).

    Google Scholar 

  33. R. D. Goodwin, NBS (U.S.) Tech. Note 653, Boulder, Colo. (1974).

  34. R. D. Goodwin, H. M. Roder, and G. C. Straty, NBS (U.S.) Tech. Note 684, Boulder, Colo. (1976).

  35. R. D. Goodwin and W. M. Haynes, NBS (U.S.) Monogr. 170 (1982).

  36. N. B. Vargaftik, Tables of the Thermophysical Properties of Gases and Liquids, 2nd ed. (Wiley, New York, 1977).

    Google Scholar 

  37. C. A. Nieto de Castro, J. C. G. Calado, and W. A. Wakeham, in Proc. 7th Symp. Thermophys. Prop., A. Cezairlyan, ed. (ASME, New York, 1977).

    Google Scholar 

  38. C. A. Nieto de Castro, J. C. G. Calado, and W. A. Wakeham, High Temp. High Press. 11:551 (1979).

    Google Scholar 

  39. J. M. N. A. Fareleira, Ph.D. thesis (Instituto Superior Técnico, Lisbon, Portugal, 1986).

    Google Scholar 

  40. J. C. G. Calado, J. M. N. A. Fareleira, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 4:193 (1983).

    Google Scholar 

  41. M. J. Assael, E. Charitidou, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 8:663 (1987).

    Google Scholar 

  42. D. J. Evans and W. G. Hoover, Ann. Rev. Fluid Mech. 18:243 (1986).

    Google Scholar 

  43. C. A. Nieto de Castro and W. A. Wakeham, Proc. Int. Chem. Eng. Conf., CHEMPOR 78, Braga, Portugal (1978).

  44. H. M. Roder, C. A. Nieto de Castro, and U. V. Mardolcar, Int. J. Thermophys. 8:521 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calado, J.C.G., Fareleira, J.M.N.A., Mardolcar, U.V. et al. Thermal conductivity of liquid n-alkanes. Int J Thermophys 9, 351–363 (1988). https://doi.org/10.1007/BF00513076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00513076

Key words

Navigation