Isolation and characterization of a methanol utilizing yeast with high cell yield

  • P. Jara
  • J. J. Allais
  • J. Baratti
Industrial Microbiology


A yeast (Pichia pastoris strain CMB 10) growing on methanol as sole carbon and energy source was isolated. The high growth rate (0.235·h−1 at pH 5) and high cell yield (0.41 g cell per g methanol at pH 3.5) of this strain are of interest for production of single cell protein (SCP). Other advantages of the strain are: low maintenance coefficient (m=9.5 mg·g−1·h−1), high affinity for methanol (Ks=100 mg·l−1), possibility of non aseptic culture at low pH (pH 3.5), equilibrated amino acid profile and flocculating properties.


Methanol Growth Rate Energy Source High Growth High Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballerini D (1978) Procédé IFP de Production de protéines ex-méthanol. Revue Institut Français du Pétrole 33:111–117Google Scholar
  2. Cooney CL, Levine DW (1972) Microbioal utilization of methanol. Adv Appl Microbiol 15:337–365Google Scholar
  3. Conney CL, Levine DW (1974) SCP Production from methanol by yeast in single cell protein II: Tannenbaum S, Wang DC (eds) 402–423Google Scholar
  4. Conney CL, Makiguchi N (1977) An assessement of single cell protein from methanol grown yeast. Biotechnol Bioeng Symp 7:65–76Google Scholar
  5. Couderc R, Baratti J (1980) Oxidation of methanol by the yeast Pichia pastoris IFP 206: Purification and properties of the alcohol oxidase. Agric Biol Chem 44:2279–2289Google Scholar
  6. Hamer G, Pal HS, Hamdan IY (1979) Yield derepression in methanol utilizing batch cultures. Biotechnol Letters 1:9–14Google Scholar
  7. Levine DW, Cooney CL (1973) Isolation and characterization of a thermotolerant methanol utilizing yeast. Appl Microbiol 26:982–990Google Scholar
  8. Minami K, Yamamura M, Shimizu S, Ogawa K, Sekine N (1978) A new methanol assimilating high productive thermophilic yeast. J Ferm Technol 56:1–7Google Scholar
  9. O'Connor ML, Quayle JR (1980) Pentose phosphate-dependant fixation of formaldehyde by methanol grown hansenula polymorpha and Candida boidinii. J Gen Microbiol 26:219–255Google Scholar
  10. Ogata K, Nishikawa H, Ohsugi M, Tochikura T (1970) Studies of the production of yeast. Part II: the cultural conditions of methanol assimilating yeast Klockera sp. n0 2201. J Ferm Technol 48:470–477Google Scholar
  11. Pilat P, Prokop A (1975) The effect of methanol, formaldehyde and formic acid on growth of Candida boidinii 11Bh. Biotechnol Bioeng 17:1717–1728Google Scholar
  12. Sahm H, Wagner F (1972) Mikrobioelle verwertung von methanol; Isolierung und charakterisierung der Hefe Candida boidinii. Arch Mikrobiol 84:29–42Google Scholar
  13. Van Dijken JP, Harder W (1974) Optimal conditions for the enrichement and isolation of methanol assimilating yeast. J Gen Microbiol 84:409–411Google Scholar
  14. Van Dijken JP, Harder W (1975) Growth yields of microorganisms on methanol and methane. A theoretical study. Biotechnol Bioeng 17:15–30Google Scholar
  15. Van Dijken JP, Harder W, Beadsmore AJ, Quayle JR (1978) Dihydroxyacetone: an intermediate in the assimilation of methanol by yeasts? FEMS Microbiol Letters 4:97–102Google Scholar
  16. Held W, Schlanderer G, Reimann J, Dellweg H (1978) Continuous culture of Candida boidinii variant 60 growing on methanol. Eur J Appl Microbiol 6:127–132Google Scholar
  17. Held W, Schlanderer G, Reimann J, Dellweg H (1978) Metabolic changes during substrate shifts in continuous culture of the yeast Candida boidinii variant 60. Eur J Appl Microbiol 6:133–144Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • P. Jara
    • 1
  • J. J. Allais
    • 1
  • J. Baratti
    • 1
  1. 1.Laboratoire de Chimie BactérienneCentre National de la Recherche ScientifiqueMarseille, Cedex 9France

Personalised recommendations