Caffeine and chlordiazepoxide: Effects on motor activity in the chronic thalamic rat

  • Alexander A. Borbély
  • Martin Jost
  • Joseph P. Huston
  • Peter G. Waser


The effects of three doses of caffeine and of chlordiazepoxide (CDX) on motor activity were tested in the chronic thalamic rat. In this preparation virtually all cortical, striatal and limbic structures were ablated. A small dose of caffeine had only a weak motor stimulant effect which was succeeded by sedation. Larger doses that are stimulatory in intact animals, depressed motor activity in the thalamic rat. Amphetamine, in contrast to caffeine, produced a substantial motor stimulation. CDX caused a dose-dependent reduction of motor activity, similar to its effect in the intact rat. It is concluded that (a) telencephalic structures are involved in mediating the stimulatory action of caffeine; (b) a sedative component of caffeine may be present, but masked, in the intact animal, and may be due to serotoninergic mechanisms; (c) the presence of limbic structures is not necessary for the sedative effect of CDX.

Key words

Caffeine Amphetamine Chlordiazepoxide Thalamic Rat Stimulants Minor Tranquillizer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berkowitz, B. A., Spector, S.: The effect of caffeine and theophylline on the disposition of brain serotonin in the rat. Europ. J. Pharmacol. 16, 322–325 (1971)Google Scholar
  2. Boissier, J. R., Simon, P.: Action de la caféine sur la motilité spontanée de la souris. Arch. int. Pharmacodyn. 158, 212–221 (1965)Google Scholar
  3. Boissier, J. R., Simon, P.: Influence de la caféine sur le comportement en situation libre de la souris. Arch. int. Pharmacodyn. 166, 362–369 (1967)Google Scholar
  4. Borbély, A. A., Huston, J. P., Baumann, I. R.: Body temperature and behavior in chronic brain-lesioned rats after amphetamine, chlorpromazine, and γ-butyrolactone. In: Pharmacological aspects of thermoregulation. E. Schönbaum and P. Lomax (eds.), pp. 447–462. Basel: S. Karger 1973Google Scholar
  5. Brown, B. B.: CNS drug actions and interaction in mice. Arch. int. Pharmacodyn. 128, 391–414 (1960)Google Scholar
  6. Dews, P. B.: The measurement of the influence of drugs on voluntary activity in mice. Brit. J. Pharmacol. 8, 46–48 (1953)Google Scholar
  7. Frank, G. B., Jhamandas, K.: Effects of general stimulant drugs on the electrical responses of isolated slabs of cat's cerebral cortex. Brit. J. Pharmacol. 39, 716–723 (1970)Google Scholar
  8. Geyer, M. A., Dawsey, W. J., Mandell, A. J.: Differential effects of caffeine, d-amphetamine and methylphenidate on individual raphe cell fluorescence: a microspectrofluorimetric demonstration. Brain Res. 85, 135–139 (1975)Google Scholar
  9. Greenblatt, D. J., Shader, R. I.: Benzodiazepines in clinical practice. New York: Raven Press 1974Google Scholar
  10. Herz, A., Neteler, B., Teschemacher, H. J.: Vergleichende Untersuchungen über zentrale Wirkungen von Xanthinderivaten in Hinblick auf deren Stoffwechsel und Verteilung im Organismus. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 261, 486–502 (1968)Google Scholar
  11. Hiebel, G., Bonvallet, M., Huve, P., Dell, P.: Analyse neurophysiologique de l'action centrale de la d-amphétamine (Maxiton). Sem. Hôp., Paris 30, 1880–1887 (1954)Google Scholar
  12. Hill, R. T., Tedeschi, D. H.: Animal testing and screening procedures in evaluating psychotropic drugs. In: An introduction to psychopharmacology. R. H. Rech and K. E. Moore (eds.), pp. 237–288. New York: Raven Press 1971Google Scholar
  13. Huston, J. P.: Learning in the thalamic rat. In Subcortical mechanisms and sensorimotor activities. T. L. Frigyesi (ed.), pp. 217–227. Bern: Huber 1975Google Scholar
  14. Huston, J. P., Borbély, A. A.: Operant conditioning in forebrain ablated rats by use of rewarding hypothalamic stimulation. Brain Res. 50, 467–472 (1973)Google Scholar
  15. Huston, J. P., Borbély, A. A.: The thalamic rat: general behavior, operant learning with rewarding hypothalamic stimulation, and effects of amphetamine. Physiol. Behav. 12, 433–448 (1974)Google Scholar
  16. Jouvet, M.: The role of monoamines and acetylcholine containing neurons in the regulation of the sleep-waking cycle. In: Reviews of physiology Vol. 64. M. Jouvet and G. Moruzzi (eds.), pp. 166–275. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  17. Jouvet, M., Benoit, O., Marsallon, A., Courjon, J.: Action de la caféine sur l'activité électrique cérébrale. C. R. Soc. Biol. (Paris) 151, 1942–1945 (1957)Google Scholar
  18. Krupp, P., Monnier, M., Stille, G.: Topischer Einfluß des Coffein auf das Gehirn. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 235, 381–394 (1959)Google Scholar
  19. Olds, M. E., Olds, J.: Effects of anxiety-relieving drugs on unit discharges in hippocampus, reticular midbrain, and pre-optic area in the freely moving rat. Int. J. Neuropharm. 8, 87–103 (1969)Google Scholar
  20. Pellegrino, L. J., Cushman, A. J.: A stereotaxic atlas of the rat brain. New York: Appleton-Century-Crafts 1967Google Scholar
  21. Randall, L. O., Schallek, W., Sternbach, L. H., Ning, R. Y.: Chemistry and pharmacology of the 1,4-benzodiazepines. In: Medicinal chemistry: a series of monographs—volume 4–11. pp. 175–281. New York-San Francisco-London: Academic Press 1974Google Scholar
  22. Rickels, K., Clark, E. L., Etezady, M. H., Sachs, T., Sapra, R. K., Yee, R.: Butabarbital sodium and chlordiazepoxide in anxious neurotic outpatients: A collaborative controlled study. Clin. Pharmacol. Ther. 11, 538–550 (1970)Google Scholar
  23. Ritchie, J. M., The xanthines. In: The pharmacological basis of therapeutics. L. S. Goodman and A. Gilman (eds.), pp. 358–370. London-Toronto: The Macmillan Company 1970Google Scholar
  24. Schallek, W., Schlosser, W., Randall, L. O.: Recent developments in the pharmacology of the benzodiazepines. Advanc. Pharmacol. Chemother. 10, 119–183 (1972)Google Scholar
  25. Schallek, W., Thomas, J.: Effects of Benzodiazepines on spontaneous electrical activity of subcortical areas in brain of cat. Arch. int. Pharmcodyn. 192, 321–337 (1971)Google Scholar
  26. Scott, C. C., Anderson, R. C., Chen, K. K.: Further study of some 1-substituted theobromine compounds. J. Pharmacol. exp. Ther. 86, 113–119 (1946)Google Scholar
  27. Thithapandha, A., Maling, H. M., Gillette, J. R.: Effects of caffeine and theophylline on activity of rats in relation to brain xanthine concentrations. Proc. Soc. exp. Biol. (N.Y.) 139, 582–586 (1972)Google Scholar
  28. Truitt, E. B.: The xanthines. In: Drill's pharmacology in medicine, J. R. Dipalma (ed.), pp. 533–556. New York: McGraw Hill 1971Google Scholar
  29. Waldeck, B.: Ethanol and caffeine: a complex interaction with respect to locomotor activity and central catecholamines. Psychopharmacologia (Berl.) 36, 209–220 (1974)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Alexander A. Borbély
    • 1
  • Martin Jost
    • 1
  • Joseph P. Huston
    • 1
  • Peter G. Waser
    • 1
  1. 1.Pharmakologisches Institut der Universität ZürichZürichSwitzerland

Personalised recommendations