Skip to main content
Log in

Embryonic development and mitochondrial function

1. Effects of chloramphenicol infusion on the synthesis of cytochrome oxidase and DNA in rat embryos during late organogenesis

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

Cytochrome oxidase, which is partially synthesized by the mitochondrion, was used as a measure for the development of mitochondrial function in rat embryos during the late stage of organogenesis. For this purpose the specific inhibitor of mitochondrial protein synthesis, chloramphenicol (CAP), served as a tool. Due to the rapid elimination rate of CAP from rats, a method for continuous infusion which would not cause immobilization to the animals was devised.

  1. 1.

    Pharmacokinetic studies proved that CAP reaches the embryo before placentation. Concentrations of CAP in the embryo are as high as they are in the maternal serum (about 20 μg/ml serum or g embryo) and thus are sufficiently in supply for the inhibition of mitochondrial protein synthesis, if 1000 mg/kg CAP are infused intravenously per 24 hrs. CAP is partially excluded from the embryonic compartment after the placental barrier has fully developed: whereas CAP concentration in the maternal serum remains at about 20 μg/ml, the concentration in the embryonic compartment drops to about 10 μg/g embryonic tissue during day 13 of gestation.

  2. 2.

    The average cytochrome oxidase activity per cell is very low (about 1 nmole O2 min×μg DNA−1) in embryonic tissue as it is in many other rapidly proliferating tissues. It is 15–60 times higher in slowly proliferating tissues, as, for example, the adult rat liver or brain (>14 nmoles O2/min×μg DNA−1).

  3. 3.

    When the infusion technique is applied on day 12 of gestation, a sufficiently high concentration of CAP in embryonic tissue can be obtained to inhibit the synthesis of cytochrome oxidase. In contrast to tissues of an adult organism—as in the case of liver after partial hepatectomy—in embryonic tissues this limitation in the availability of cytochrome oxidase apparently results in a critical reduction of energy production, which subsequently affects DNA synthesis and embryonic growth.

  4. 4.

    The possible relevance and applicability of these experimental findings to man is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvin, J., Dixit, B. N.: Pharmacologic implications of alterations in the metabolism of chloramphenicol. Biochem. Pharmacol. 23, 139–151 (1974)

    Google Scholar 

  • Barron, E. S. G., De Meio, R. H., Klemperer, F.: Studies on biological oxidations: V. Copper and hemochromogens as catalysts for the oxidation of ascorbic acid. J. biol. Chem. 112, 625–640 (1935/36)

    Google Scholar 

  • Bartmann, K.: Antimikrobielle Chemotherapie. p. 138. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  • Borei, H.: In: Ark. Kemi. Geol. 20 A, No. 8 (1945) quoted by Slater (1949)

  • Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315–323 (1956)

    Google Scholar 

  • Chance, B., Schindler, F. J.: In: Oxidases and related redox systems: T. E. King, H. S. Mason, and M. Morrison, eds. New York: J. Wiley & Sons Inc. 1965

    Google Scholar 

  • Cox, S. J., Gunberg, D. L.: Metabolite utilization by isolated embryonic rat hearts in vitro. J. Embryol. exp. Morph. 28, 235–245 (1972a)

    Google Scholar 

  • Cox, S. J., Gunberg, D. L.: Energy metabolism in isolated rat embryo hearts: effect of metabolic inhibitors. J. Embryol. exp. Morph. 28, 591–599 (1972b)

    Google Scholar 

  • Dutton, G. J.: Comparison of glucuronide synthesis in developing mammalian and avian liver. Ann. N.Y. Acad. Sci. 111, 259–273 (1963)

    Google Scholar 

  • Ferrari, V., Della Bella, D.: Comparison of chloramphenicol and thiamphenicol metabolism. Postgrad. Med. 50, (Suppl. 5), 17–22 (1974)

    Google Scholar 

  • Firkin, F. C., Linnane, A. W.: Biogenesis of mitochondria: 8. The effect of chloramphenicol on regenerating rat liver. Exp. Cell Res. 55, 68–76 (1969)

    Google Scholar 

  • Fouts, J. R., Adamson, R. H.: Drug metabolism in the newborn rabbit. Science 129, 897–898 (1959)

    Google Scholar 

  • Glazko, A. J., Dill, A. W.: Biochemical studies on chloramphenicol (chloromycetin): I. Colorimetric methods for the determination of chloramphenicol and related compounds. Arch. Biochem. 23, 411–418 (1949)

    Google Scholar 

  • Jacovcic S., Haddock, J.: Getz, G. S., Rabinowitz, M., Swift, H.: Mitochondrial development in liver of foetal and newborn rats. Biochem. J. 121, 341–347 (1971)

    Google Scholar 

  • Jäger, E., Bass, R.: Chloramphenicol thiamphenicol and cyclohexamide as tools for the measurement of mitochondrial protein synthesis in vitro during organogenesis of rat embryos. Naunyn-Schmiedeberg's Arch. Pharmacol. 290, 161–173 (1975)

    Google Scholar 

  • Kroon, A. W.: Protein synthesis in mitochondria: III. On the effects of inhibitors on the incorporation of amino acids into protein by intact mitochondria and digitonin fractions. Biochem. biophys. Acta (Amst.) 108, 275–284 (1965)

    Google Scholar 

  • Kroon, A. M., De Vries, H.: The effect of chloramphenicol on the biogenesis of mitochondria of rat liver in vivo. FEBS Leters 3, 208–210 (1969)

    Google Scholar 

  • Lamb, A. J., Clark-Walker, G. D., Linnane, A. W.: The biogenesis of mitochondria: differentiation of mitochondrial and cytoplasmic protein synthesis in vitro by antibiotics. Biochem. biophys. Acta (Amst.) 161, 415–427 (1968)

    Google Scholar 

  • Lehninger, A. L., Ul Hassan, M., Sudduth, H. C.: Phosphorylation coupled to the oxidation of ascorbic acid by mitochondria. J. biol. Chem. 210, 911–919 (1954)

    Google Scholar 

  • Löbbecke, E. A., Schultze, B., Maurer, W.: Variabilität der Generationszeit bei fetalen Zellarten der Ratte. Exp. Cell Res. 55, 176–184 (1969)

    Google Scholar 

  • Neubert, D., Gregg, C. T., Bass, R., Merker, H.-J.: Occurrence and possible functions of mitochondrial DNA in animal development. In: Biochemistry of animal development R. Weber, ed., Vol. III, pp. 387–464. New York: Academic Press 1975

    Google Scholar 

  • Neubert, D., Oberdisse, E., Bass, R.: Biosynthesis and degradation of mammalian mitochondrial DNA. In: Biochemical aspects of the biogenesis of mitochondria, E. C. Slater, J. M. Tager, S. Papa, and E. Quagliariello, eds. pp. 103–128. Bari: Adriatica Editrice 1968

    Google Scholar 

  • Neubert, D., Peters, H., Teske, S., Köhler, E., Barrach, H.-J.: Studies on the problem of “Aerobic Glycolysis” occurring in mammalian embryos. Naunyn-Schmiedebergs Arch. Pharmak. 268, 235–241 (1971)

    Google Scholar 

  • Oerter, D., Bass, R.: Effect of chloramphenicol infusion on the rate of synthesis of cytochrome oxidase in mammalian embryonic tissue. Naunyn-Schmiedeberg's Arch. Pharmacol. 272, 239–242 (1972)

    Google Scholar 

  • Roodyn, D. B., Wilkie, D.: The Biogenesis of mitochondria. pp. 38–39. London: Methuen 1968

    Google Scholar 

  • Ross, S., Burke, F. G., Sites, J., Rice, E. C.: Placental transmission of chloramphenicol. J. Amer. med. Ass. 142, 1361–1362 (1950)

    Google Scholar 

  • Rubin, M. S., Tzagoloff, A.: Assembly of the mitochondrial membrane system. X. Mitochondrial synthesis of three of the subunit proteins of yeast cytochrome oxidase. J. biol. Chem. 248, 4275–4279 (1973)

    Google Scholar 

  • Schnaitman, C., Erwin, V. G., Greenawalt, I. W.: The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. J. Cell Biol. 32, 719–735 (1967)

    Google Scholar 

  • Scott, W. C., Warner, R. F.: Placental transfer of chloramphenicol. J. Amer. med. Ass. 142, 1331–1332 (1950)

    Google Scholar 

  • Slater, E. C.: The measurement of the cytochrome oxidase activity of enzyme preparations. Biochem. J. 44, 305–318 (1949)

    Google Scholar 

  • Smith, L., Camerino, P. W.: Comparison of the polarographic and spectrometric assays for cytochrome-c-oxidase activity. Biochemistry 2, 1428–1432 (1963)

    Google Scholar 

  • Uesugi, T., Ikeda, M., Kanei, Y., Hori, R., Arita, T.: Studies on the biliary excretion mechanisms of drugs; II. Biliary excretion of thiamphenicol, chloramphenicol and their glucuronides in the rat. Biochem. Pharmacol. 23, 2315–2321 (1971)

    Google Scholar 

  • Vömel, W., Spingler, H.: Ein neuer geschmackfreier Chloramphenicolester (Chloramphenicol-3-stearoylglycolat). Arzneimittel-Forsch. 8, 123–126 (1959)

    Google Scholar 

  • Walter, A. M., Heilmeyer, L.: Antibiotikafibel. p. 305. Stuttgart: Thieme 1969

    Google Scholar 

  • Weiss, H., Sebald, W., Bücher, Th.: Cycloheximide resistant incorporation of amino acids into a polypeptide of the cytochrome oxidase of N. crassa. Europ. J. Biochem. 22, 19–26 (1971)

    Google Scholar 

  • Wharton, D. C., Tzagoloff, A.: Cytochrome oxidase from beef heart mitochondria. In: Methods in Enzymology, Vol. X: Oxidation and Phosphorylation, R. W. Estabrook and M. E. Pullman, eds. pp. 245–250. New York: Academic Press 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oerter, D., Bass, R. Embryonic development and mitochondrial function. Naunyn-Schmiedeberg's Arch. Pharmacol. 290, 175–189 (1975). https://doi.org/10.1007/BF00510549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00510549

Key words

Navigation