Advertisement

Effects of manganese, glucose and isoprenaline on the action potential of anoxic ventricular muscle

  • Terence F. McDonald
  • Don P. MacLeod
Article

Summary

Anoxia has previously been shown to depress the action potential of guinea pig ventricular muscle. It seemed possible that the anoxia-induced decreases in action potential duration and overshoot were related to a reduction in the slow inward current. The following indirect evidence was obtained in support of this view:
  1. 1.

    Anoxic muscle incubated in 50 mM glucose medium has a normal action potential duration and overshoot. In 5 mM glucose medium the action potential duration was severely reduced with only a small decline in overshoot. In the absence of glucose the action potential duration was further reduced and the amplitude was depressed by about 35 mV. Reincubation in 50 mM glucose medium quickly restored both duration and overshoot.

     
  2. 2.

    In 50 mM glucose medium, 20 mM manganese chloride (Mn++) reduced the action potential duration and overshoot. Both parameters were restored after washing with Mn++-free medium.

     
  3. 3.

    Changes in action potential duration at the 0 mV and +20 mV levels were correlated with changes in peak tension and rate of rise of tension.

     
  4. 4.

    Isoprenaline restored the reduced action potential duration of anoxic muscle incubated in 5 mM glucose medium: This effect was blocked by Mn++.

     

Key words

Ventricular Muscle Action Potential Anoxia Glucose Manganese Isoprenaline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeler, G. W., Jr., Reuter, H.: The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J. Physiol. (Lond.) 207, 211–229 (1970).Google Scholar
  2. Buccino, R. A., Sonnenblick, E. H., Spann, J. F., Friedman, W. F., Braunwald, E.: Interactions between changes in the intensity and duration of the active state in the characterization of inotropic stimuli on heart muscle. Circulat. Res. 21, 857–867 (1967).Google Scholar
  3. Coraboeuf, E., Vassort, G.: Effects of some inhibitors of ionic permeabilities on ventricular action potential and contraction of rat and guinea pig hearts. J. Electrocardiol. 1, 19–30 (1968).Google Scholar
  4. Deck, K. A., Trautwein, W.: Ionic currents in cardiac excitation. Pflügers Arch. ges. Physiol. 280, 63–80 (1964).Google Scholar
  5. DeMello, W. C.: Metabolism and electrical activity of the heart: action of 2,4-dinitrophenol and ATP. Amer. J. Physiol. 196, 377–380 (1959).Google Scholar
  6. Garnier, D., Rougier, O., Gargoüil, Y. M., Coraboeuf, E.: Electrophysiological analysis of myocard membrane properties during the plateau of the action potential. Existence of a slow inward current in solutions without divalent ions. Pflügers Arch. 313, 321–342 (1969).Google Scholar
  7. Giebisch, G., Weidmann, S.: Membrane currents in mammalian ventricular heart muscle fibers using a voltage-clamp technique. J. gen. Physiol. 57, 290–296 (1971).Google Scholar
  8. Hohorst, H. J.: L-(+)-Lactate determination with lactic dehydrogenase and DPN. In: Methods of enzymatic analysis, pp. 226–270, ed. H. U. Bergmeyer. New York: Academic Press 1965.Google Scholar
  9. Horn, R. S., Levin, R., Haugaard, N.: The influence of Oligomycin on the actions of epinephrine and theophylline upon the perfused rat heart. Biochem. Pharmacol. 18, 503–509 (1969).Google Scholar
  10. McDonald, T. F., Hunter, E. G., MacLeod, D. P.: Adenosinetriphosphate partition in cardiac muscle with respect to transmembrane electrical activity. Pflügers Arch. 322, 95–108 (1971).Google Scholar
  11. McDonald, T. F., MacLeod, D. P.: Anoxia-recovery cycle in ventricular muscle: action potential duration, contractility and ATP content. Pflügers Arch. 325, 305–322 (1971).Google Scholar
  12. McDonald, T. F., MacLeod, D. P.: The effect of 2,4-dinitrophenol on the electrical and mechanical activity, metabolism and ion movements in guinea pig ventricular muscle. Brit. J. Pharmacol. 44, 711–722 (1972).Google Scholar
  13. MacLeod, D. P., Prasad, K.: Influence of glucose on the transmembrane action potential of papillary muscle. Effects of concentration, phlorizin and insulin non-metabolizable sugars, and stimulators of glycolysis. J. gen. Physiol. 53, 792–815 (1969).Google Scholar
  14. Mascher, D.: Electrical and mechanical responses from ventricular muscle fibers after inactivation of the sodium carrying system. Pflügers Arch. 317, 359–372 (1970).Google Scholar
  15. Noble, D., Tsien, R. W.: Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current. J. Physiol. (Lond.) 200, 233–254 (1969).Google Scholar
  16. Ochi, R.: The slow inward current and the action of manganese ions in guinea pig's myocardium. Pflügers Arch. 316, 81–94 (1970).Google Scholar
  17. Pappano, A. J.: Calcium dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by potassium. Circulat. Res. 27, 379–390 (1970).Google Scholar
  18. Reuter, H.: The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration. J. Physiol. (Lond.) 192, 479–492 (1967).Google Scholar
  19. Rougier, O., Vassort, G., Garnier, D., Gargoüil, Y. M., Coraboeuf, E.: Existence and role of a slow inward current during the frog atrial action potential. Pflügers Arch. 308, 91–110 (1969).Google Scholar
  20. Scholz, H.: Über den Mechanismus der positiv inotropen Wirkung von Theophyllin am Warmbluterherzen. III. Wirkung von Theophyllin auf Kontraktion und Ca-abhängige. Membranpotentialänderungen. Naunyn-Schmiedebergs Arch. Pharmak. 271, 410–429 (1971).Google Scholar
  21. Trautwein, W., Dudel, J.: Aktionspotential und Kontraktion des Herzmuskels in Sauerstoffmangel. Pflügers Arch. ges. physiol. 263, 23–32 (1956).Google Scholar
  22. Vassort, G., Rougier, O., Garnier, D., Sauviat, M. P., Coraboeuf, E., Gargoüil, Y. M.: Effects of adrenaline on membrane inward currents during the cardiac action potential. Pflügers Arch. 309, 70–81 (1969).Google Scholar
  23. Vitek, M., Trautwein, W.: The effect of manganese ions on action potential and ionic current in cardiac Purkinje fibres. Pflügers Arch. 319, R113 (1970).Google Scholar
  24. Webb, J. L., Hollander, P. B.: Metabolic aspects of the relationships between the contractility and membrane potentials of the rat atrium. Circulat. Res. 4, 618–626 (1956).Google Scholar
  25. Woodbury, J. W., Brady, A. J.: Intracellular recording from moving tissues with a flexibly mounted ultramicroelectrode. Science 123, 100–101 (1956).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Terence F. McDonald
    • 1
  • Don P. MacLeod
    • 1
  1. 1.Department of Physiology and BiophysicsDalhousie UniversityHalifaxCanada

Personalised recommendations