International Journal of Thermophysics

, Volume 6, Issue 5, pp 499–515 | Cite as

Aluminum. I. Measurement of the relative enthalpy from 273 to 929 K and derivation of thermodynamic functions for Al(s) from 0 K to Its melting point

  • D. A. Ditmars
  • C. A. Plint
  • R. C. Shukla
Article

Abstract

The relative enthalpy of pure, polycrystalline aluminum (NBS Standard Reference Material 44f, for the freezing point of aluminum on IPTS-68) has been measured over the temperature range 273 to 929 K. The enthalpy measurements were made in a precision isothermal phase-change calorimeter and are believed to have an inaccuracy not exceeding 0.2%. Pt-10Rh alloy and quartz glass were used as the encapsulating materials. The enthalpy data for Al(s) and SiO2(l) have been fitted by the method of least squares with cubic polynomial functions of temperature. Heat capacity data for Al(s), derived from these polynomials, have been smoothly merged using a spline technique to the most reliable low-temperature heat capacity data for Al(s) below 273 K. The merged data are compared with corresponding data from the literature as well as with published critical compilations of heat capacity data for Al(s). A new table of thermodynamic functions for Al(s) has been derived. A theoretical interpretation of the results apears in the following paper.

Key words

aluminum drop calorimetry enthalpy heat capacity quartz specific heat thermodynamic functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. R. Brooks and R. E. Bingham, J. Phys. Chem. Solids 29:1553 (1968).Google Scholar
  2. 2.
    A. J. Leadbetter, J. Phys. C (Proc. Phys. Soc.) 1:1481 (1968).Google Scholar
  3. 3.
    Y. Takahashi, Private communication, 4 Dec. 1981.Google Scholar
  4. 4.
    R. C. Shukla and C. A. Plint, Int. J. Thermophys. 1:299 (1980).Google Scholar
  5. 5.
    J. C. Slater, Introduction to Chemical Physics (McGraw-Hill, New York, 1939), Chap. XIII.Google Scholar
  6. 6.
    W. C. Overton, J. Chem. Phys. 37:2975 (1962).Google Scholar
  7. 7.
    W. A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966).Google Scholar
  8. 8.
    N. W. Ashcroft, Phys. Lett. 23:48 (1966).Google Scholar
  9. 9.
    L. Dagens, M. Rasolt, and R. Taylor, Phys. Rev. B11:2726 (1975).Google Scholar
  10. 10.
    D. A. Ditmars and T. B. Douglas, J. Res. Natl. Bur. Stand. (U.S.) 75A:401 (1971).Google Scholar
  11. 11.
    T. B. Douglas and E. G. King, in Experimental Thermodynamics, Vol. I. Calorimetry of Non-Reacting Systems, J. P. McCullough and D. W. Scott, eds., (Butterworths, London, 1968); cf. also NBS Special Publication No. 33, p. 181 (1970).Google Scholar
  12. 12.
    D. A. Ditmars, Int. J. Appl. Rad. Isotopes 27:469 (1976).Google Scholar
  13. 13.
    D. C. Ginnings, T. B. Douglas, and A. F. Ball, J. Res. Natl. Bur. Stand (U.S.) 45:23 (1950) (RP2110).Google Scholar
  14. 14.
    NBS Certificate: Standard Reference Material 44f, Aluminum, 5 Apr. 1973.Google Scholar
  15. 15.
    G. T. Furukawa, J. Res. Natl. Bur. Stand. (U.S.) 78A:477 (1974).Google Scholar
  16. 16.
    G. T. Furukawa, J. L. Riddle, W. R. Bigge, and E. R. Pfeiffer, Application of Some Metal SRM's as Thermometric Fixed Points, NBS Special Publication 260-77 (1982).Google Scholar
  17. 17.
    D. A. Ditmars, S. Ishihara, S. S. Chang, and G. Bernstein, J. Res. Nat. Burl. Stand. (U.S.) 87 (2):159 (1982).Google Scholar
  18. 18.
    Dow Chemical Co. Thermal Research Group (M. W. Chase, private communication), 7 July 1981.Google Scholar
  19. 19.
    JANAF Thermochemical Data, Table (Al), 30 June 1979 (obtainable from the Dow Chemical Co., 1707 Building, Midland, MI 48640).Google Scholar
  20. 20.
    W. F. Giauque and P. F. Meads, J. Am. Chem. Soc. 63:1897 (1941).Google Scholar
  21. 21.
    D. B. Downie and J. F. Martin, J. Chem. Thermodyn. 12:779 (1980).Google Scholar
  22. 22.
    W. T. Berg, Phys. Rev. 167:583 (1968).Google Scholar
  23. 23.
    N. E. Phillips, Phys. Rev. 114:676 (1959).Google Scholar
  24. 24.
    M. Dixon, F. E. Hoare, T. M. Holden, and D. E. Moody, Proc. R. Soc. Lond. 285:561 (1965).Google Scholar
  25. 25.
    W. M. Hartmann, H. V. Culbert, and R. P. Heubener, Phys. Rev. B 1:1486 (1970).Google Scholar
  26. 26.
    R. A. McDonald, J. Chem. Eng. Data 12:115 (1967).Google Scholar
  27. 27.
    D. I. Marchidan and M. Ciopec, Rev. Roum. Chim. 15:1005 (1970).Google Scholar
  28. 28.
    S. Umino, Sci. Rep. Tohoku Imp. Univ. (Ser. 1) 15:597 (1926).Google Scholar
  29. 29.
    H. Seekamp, Z. Anorg. Allg. Chem. 195:345 (1931).Google Scholar
  30. 30.
    A. Avramescu, Z. Tech. Phys. 20:213 (1939).Google Scholar
  31. 31.
    T. E. Pochapsky, Acta Metall. 1:747 (1953).Google Scholar
  32. 32.
    U. Schmidt, O. Vollmer, and R. Kohlhaas, Z. Naturforsch. 25a:258 (1970).Google Scholar
  33. 33.
    C. G. Maier and C. T. Anderson, J. Chem. Phys. 2:513 (1934).Google Scholar
  34. 34.
    C. R. Brooks, Private communication, 9 Dec. 1970.Google Scholar
  35. 35.
    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, in Selected Values of the Thermodynamic Properties of the Elements (American Society for Metals, Metals Park, OH, 1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • D. A. Ditmars
    • 1
  • C. A. Plint
    • 2
  • R. C. Shukla
    • 2
  1. 1.Chemical Thermodynamics DivisionNational Bureau of StandardsGaithersburgUSA
  2. 2.Physics DepartmentBrock UniversitySt. CatharinesCanada

Personalised recommendations