Skip to main content
Log in

Cytochromes, rubredoxin, and sulfur metabolism of the non-thiosulfate-utilizing green sulfur bacterium Pelodictyon luteolum

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two soluble c-type cytochromes (c-553 and c-555) and the nonheme iron-containing protein rubredoxin of the non-thiosulfate-utilizing green sulfur bacterium Pelodictyon luteolum were highly purified by ion exchange column chromatography, gel filtration and ammonium sulfate fractionation. Both cytochrome are small and basic hemoproteins, while rubredoxin is an acidic small nonheme iron protein. Cytochrome c-553 has a molecular weight of 13,000 determined by Sephacryl S-200 chromatography and of 10,700 by electrophoresis on SDS acrylamide gel, an isoelectric point at pH 10.2, a redox-potential of +220 mV. It shows maxima at 413 nm in the oxidized form, and the characteristic three maxima in the reduced state (α-band at 553 nm, β-band at 523 nm, γ-band at 417 nm). The best purity index (A 280/A 417) obtained was 0.18. Cytochrome c-555 (best purity index obtained: A 280/A 418=0.17) has an isoelectric point at pH 10.5, a molecular weight of 9,500 (by electrophoresis on SDS acrylamide gel) and a redox-potential of +160mV. The reduced form of this cytochrome shows the typical bands of c-type cytochromes at 555 (551) nm (α-band), 523 nm (β-band) and 418 nm (γ-band), while the oxidized form has the γ-band at 413 nm.

Rubredoxin (best purity index obtained: A 280/A 490=3.5) is an acidic small protein. Its molecular weight estimated by gel filtration and SDS acrylamide gel electrophoresis is 27,000 and 6,300 respectively. The monomer of this protein contains one iron atom per molecule. Rubredoxin has an isoelectric point at pH 2.8 and shows maxima at 570 nm, 490 nm and 370 nm in the oxidized form.

During anaerobic sulfide oxidation of a growing culture of Pelodictyon luteolum elemental sulfur is the first main product, which appears in the medium. Elemental sulfur is further oxidized to sulfate, after the available sulfide is completely consumed by the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C:

Chlorobium

P:

Pelodictyon

SDS:

sodium dodecylsulfate

HIPIP:

high-potential-iron-sulfur-protein Offprint requests to: U. Fischer

References

  • Bartlett JK, Skoog DA (1954) Colorimetric determination of elemental sulfur in hydrocarbons. Anal Chem 26:1003–1011

    Google Scholar 

  • Bartsch RG (1971) Cytochromes. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 23. Academic Press, New York, pp 344–363

    Google Scholar 

  • Dodgson KS (1961) Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem J 78:312–319

    Google Scholar 

  • Fischer U (1977) Die Rolle von Cytochromen im Schwefelstoffwechsel phototropher Schwefelbakterien. Doctoral thesis, Univ Bonn

  • Fukumori Y, Yamanaka T (1979) A high potential nonheme iron protein (HIPIP)-linked, thiosulfate-oxidizing enzyme derived from Chlorobium thiosulfatophilum) in oxidation of thiosulfate. Biochem Biophys Res Comm 51:107–112

    Google Scholar 

  • Kusai A, Yamanaka T (1973b) The oxidation mechanism of thiosulfate and sulfide in Chlorobium thiosulfatophilum. Roles of cytochrome c-551 and cytochrome c-553. Biochim Biophys Acta 325:304–314

    Google Scholar 

  • Kusai A, Yamanaka T (1973c) Cytochrome c (553,Chlorobium thiosulfatophilum) is a sulfide-cytochrome c reductase. FEBS Lett 34:235–237

    Google Scholar 

  • Lovenberg W (1972) Clostridial rubredoxin. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 24. Academic Press, New York London, pp 477–480

    Google Scholar 

  • Lovenberg W, Walker MN (1978) Rubredoxin. In: Colowick SP,Kaplan NO (eds) Methods in enzymology, vol 53. Academic Press, New York San Francisco London, pp 340–346

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Mathewson JH, Burger LJ, Millstone HG (1968) Cytochrome c-551: thiosulfate oxidoreductase from Chlorobium thiosulfatophilum. Fed Proc 27:774

    Google Scholar 

  • Meyer TE, Bartsch RG, Cusanovich MA, Mathewson JH (1968) The cytochromes of Chlorobium thiosulfatophilum. Biochim. Biophys Acta 153:854–861

    Google Scholar 

  • Meyer TE, Sharp JJ, Bartsch RG (1971) Isolation and properties of rubredoxin from the photosynthetic green sulphur bacteria. Biochim Biophys Acta 234:266–269

    Google Scholar 

  • Moriarty DJW, Nicholas DJD (1970) Electron transfer during sulphide and sulphite oxidation by Thiobacillus concretivorus. Biochim Biophys Acta 216:130–138

    Google Scholar 

  • Pachmayr F (1960) Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. Doctoral thesis, Univ Munich

  • Pfennig N (1965) Anreicherungskulturen für rote und grüne Schwefelbakterien. In: Schlegel HG, Kröger E (eds) Anreicherungskulturen und Mutantenauslese. Fischer, Stuttgart, pp 179–189, 503–504

    Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256

    Google Scholar 

  • Schedel M (1978) Untersuchungen zur anaeroben Oxidation reduzierter Schwefelverbindungen durch Thiobacillus denitrificans, Chromatium vinosum und Chlorobium limicola. Doctoral thesis, Univ Bonn

  • Schleifer G, Schmitt W, Knobloch K (1981) The enzymatic system thiosulfate: cytochrome c oxidoreductase from photolithoautotrophically grown Rhodopseudomonas palustris. Arch Microbiol 130:328–333

    Google Scholar 

  • Schmitt W, Schleifer G, Knobloch K (1981) The enzymatic system thiosulfate: cytochrome c oxidoreductase from photolithoautotrophically grown Chromatium vinosum. Arch Microbiol 130: 334–338

    Google Scholar 

  • Steinmetz MA, Fischer U (1981) Cytochromes of the non-thiosulfateutilizing green sulfur bacterium Chlorobium limicola. Arch Microbiol 130:31–37

    Google Scholar 

  • Steinmetz MA, Fischer U (1982) Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum. Purification, characterization and sulfur metabolism. Arch Microbiol 131:19–26

    Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek J Microbiol Serol 30:225–238

    Google Scholar 

  • Urban PJ (1961) Colorimetry of sulfur anions. Part I. An improved colorimetric method for determination of thiosulfate. Z Analyt Chem 179:415–422

    Google Scholar 

  • Weber K, Osborne M (1969) The reliability of molecular weight determinations by dodecylsulfate-polyacrylamide-gel electrophoresis. J Biol Chem 244:4406–4412

    Google Scholar 

  • Winter A, Ek K, Andersson UB (1977) Analytical electrofocusing in thin layers of polyacrylamide gels. Application Note, No. 250 Methodological, LKB-Produkter AB

  • Yamanaka T, Fukumori Y, Okunuki K (1979) Preparation of subunits of flavocytochromes c derived from Chlorobium limicola f. thiosulfatophilum and Chromatium vinosum. Anal Biochem 95:209–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmetz, M.A., Fischer, U. Cytochromes, rubredoxin, and sulfur metabolism of the non-thiosulfate-utilizing green sulfur bacterium Pelodictyon luteolum . Arch. Microbiol. 132, 204–210 (1982). https://doi.org/10.1007/BF00508732

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00508732

Key words

Navigation