Skip to main content
Log in

Occurrence and evolutionary significance of two sulfate assimilation pathways in the rhodospirillaceae

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The ability to use adenosine 5′-phosphosulfate (APS) or 3′-phosphoadenosine 5′-phosphosulfate (PAPS) as the substrate for the initial reductive step in sulfate assimilation has been tested in most of the known Rhodospirillaceae species and in some chemotrophic bacteria. Improved and optimized methods for the synthesis and purification of the sulfonucleotides APS and PAPS are described. The production of acid volatile radioactivity from 35S-APS and 35S-PAPS was measured under various conditions in the presence and absence of non-labeled sulfate. Specific differences in the ability to reduce APS or PAPS were observed among the Rhodospirillaceae species and also the chemotrophic bacteria. APS was found to be the substrate of the thiolsulfotransferase in Rps. acidophila, Rps. globiformis, Rm. vannielii, Rc. purpureus, R. tenue, Rps. gelatinosa, in Alcaligenes eutrophus and Pseudomonas aeruginosa. PAPS was the substrate in Rps. capsulata, Rps. sphaeroides, Rps. sulfidophila, Rps. palustris, Rps. viridis, R. rubrum, R. fulvum, in Paracoccus denitrificans and in several Enterobacteriaceae. The presence of different enzymatic systems for sulfate reduction in the Rhodospirillaceae family is compared with their taxonomical grouping and their possible phylogenetic relatedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APS:

adenosine 5′-phosphosulfate

PAPS:

3′-phosphate adenosine 5′-phosphosulfate

DTE:

dithioerythrol

Rc.:

Rhodocyclus

R.:

Rhodospirillum

Rm.:

Rhodomicrobium

Rps.:

Rhodopseudomonas

References

  • Adams CA, Warnes GM, Nicholas DJD (1971) Preparation of labeled adenosine-5′-phosphosulfate using APS-reductase from Thiobacillus denitrificans. Analyt Biochem 42:207–213

    Google Scholar 

  • Almassy RJ, Dickerson RE (1978) Pseudomonas cytochrome c551 at 2.0 Å resolution: Enlargement of the cytochrome c family. Proc Natl Acad Sci USA 75:2674–2678

    Google Scholar 

  • Ambler RP, Daniel M, Hermoso J, Meyer TE, Bartsch RG, Kamen MD (1979) Cytochrome c2 sequence variation among the recognized species of purple non-sulfur photosynthetic bacteria. Nature 278:659–660

    Google Scholar 

  • Baddiley J, Buchanan JG, Letters R (1957) Synthesis of adenosine-5′-sulfatophosphate. A degradation product of an intermediate in the enzymatic synthesis of sulfuric esters. J Chem Soc 1067–1071

  • Beisenherz G, Boltze HJ, Bücher T, Czok R, Garbade KH, Meyer-Arendt E, Pfleiderer G (1953) Diphosphofructose-Aldolase, Phosphoglycerinaldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskel in einem Arbeitsgang. Z Naturforsch 8b:555–557

    Google Scholar 

  • Buchanan BB, Schürmann P, Kalberer PP (1971) Ferredoxin-activated fructose diphosphatase of spinach chloroplasts. Resolution of the system, properties of the alkaline fructose diphosphatase component, and physiological significance of the ferredoxin-linked activation. J Biol Chem 246:5952–5959

    Google Scholar 

  • Burnell JN, Whatley FR (1980) Regulation of sulfur metabolism in Paracoccus denitrificans. J Gen Microbiol 118:73–78

    Google Scholar 

  • Burnell JN, John P, Whatley FR (1975) The reversibility of active transport in membrane vesicles of Paracoccus denitrificans. Biochem J 150:527–536

    Google Scholar 

  • Cherniak R, Davidson EA (1964) Synthesis of adenylyl sulfate and adenylyl sulfate 3′-phosphate. J Biol Chem 239:2986–2990

    Google Scholar 

  • Cooper BP, Trüper HG (1979) Improved synthesis and rapid isolation of millimole quantities of adenylyl-sulfate. Z Naturforsch 34c:346–349

    Google Scholar 

  • De Bont JAM, Scholten A, Hansen TA (1981) DNA-DNA hybridization of Rhodopseudomonas capsulata, Rhodopseudomonas sphaeroides and Rhodopseudomonas sulfidophila strains. Arch Microbiol 128:271–274

    Google Scholar 

  • De Ley J, Segers P, Gillis M (1978) Intra-and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 28:154–168

    Google Scholar 

  • Dreyfuss J, Monty KJ (1963) The biochemical characterization of cysteine-requiring mutants of Salmonella typhimurium. J Biol Chem 238:1019–1024

    Google Scholar 

  • Gibson J, Stackebrandt E, Zablen LB, Gupta R, Woese CR (1979) A phylogenetic analysis of the purple photosynthetic bacteria. Current Microbiol 3:59–64

    Google Scholar 

  • Gottschalk G (1964) Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. II. Verwertung organischer Säuren. Arch Mikrobiol 47:230–235

    Google Scholar 

  • Hodson RC, Schiff JA (1969) Preparation of adenosine-3′-phosphate-5′-phosphosulfate (PAPS): an improved enzymatic method using Chlorella pyrenoidosa. Arch Biochem Biophys 132:151–156

    Google Scholar 

  • Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121

    Google Scholar 

  • Kredich NM (1971) Regulation of l-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth on varying sulfur sources and O-acetyl-l-serine on gene expression. J Biol Chem 246:3474–3484

    Google Scholar 

  • MacKay RM, Zablen LB, Woese CR, Doolittle WF (1979) Homologies in processing and sequence between the 23 S ribosomal ribonucleic acids of Paracoccus denitrificans and Rhodopseudomonas sphaeroides. Arch Microbiol 123:165–172

    Google Scholar 

  • Pasternak CA, Ellis RJ, Jones-Mortimer MC, Crichton CE (1965) The control of sulphate reduction in bacteria. Biochem J 96:270–275

    Google Scholar 

  • Peck HD (1961) Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J Bacteriol 82:933–939

    Google Scholar 

  • Pfennig N (1974) Rhodopseudomonas globiformis, sp. nov., a new species of the Rhodospirillaceae. Arch Microbiol 100:197–206

    Google Scholar 

  • Robbins PW (1963) Preparation and properties of sulfur adenylates. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York, vol VI, pp 766–775

    Google Scholar 

  • Schedel M (1978) Untersuchungen zur anaeroben Oxidation reduzierter Schwefelverbindungen durch Thiobacillus denitrificans, Chromatium vinosum und Chlorobium limicola. PhD Thesis, University of Bonn

  • Schmidt A (1972) On the mechanism of photosynthetic sulfate reduction. An APS-sulfotransferase from Chlorella. Arch Mikrobiol 84:77–86

    Google Scholar 

  • Schmidt A (1975) Distribution of the APS-sulfotransferase activity among higher plants. Plant Sci Lett 5:407–415

    Google Scholar 

  • Schmidt A (1977a) Assimilatory sulfate reduction via 3′-phospho-adenosine-5′-phosphosulfate (PAPS) and adenosine-5′-phosphosulfate (APS) in blue-green algae. FEMS Lett 1:137–140

    Google Scholar 

  • Schmidt A (1977b) Adenosine-5′-phosphosulfate (APS) as sulfate donor for assimilatory sulfate reduction in Rhodospirillum rubrum. Arch Microbiol 112:263–270

    Google Scholar 

  • Schmidt A, Abrams WR, Schiff JA (1974) Reduction of adenosine-5′-phosphosulfate to cysteine in extracts from Chlorella and mutants blocked for sulfate reduction. Eur J Biochem 47:423–434

    Google Scholar 

  • Schmidt A, Trüper HG (1977) Reduction of adenylsulfate and 3′-phosphoadenylsulfate in phototrophic bacteria. Experientia 33:1008–1009

    Google Scholar 

  • Seewaldt E, Schleifer KH, Bock E, Stackebrandt E (1982) The close phylogenetic relationship of Nitrobacter and Rhodospeudomonas palustris. Arch Microbiol 131:287–290

    Google Scholar 

  • Tsang MLS, Lenieux J, Schiff JA, Bojarski TB (1976) Preparation of adenosine-5′-phosphosulfate (APS) from adenosine-3′-phosphate-5′-phosphosulfate (PAPS) prepared by an improved procedure. Analyt Biochem 74:623–626

    Google Scholar 

  • Tsang MLS, Schiff JA (1975) Studies of sulfate utilization by algae. 14. Distribution of adenosine-3′-phosphate-5′-phosphosulfate (PAPS) and adenosine-5′-phosphosulfate (APS) sulfotransferases in assimilatory sulfate reducers Plant Sci Lett 4:301–307

    Google Scholar 

  • Tsang MLS, Schiff JA (1976) Sulfate-reducing pathway in Escherichia coli involving bound intermediates. J Bacteriol 125:923–933

    Google Scholar 

  • Tuovinen OH, Kelley BC, Nicholas DJD (1975) The uptake and assimilation of sulphate by Thiobacillus ferrooxidans. Arch Microbiol 105:123–127

    Google Scholar 

  • varma AK, Nicholas DJD (1971) Metabolism of 35S-sulfate and properties of APS-kinase and PAPS-reductase in Nitrobacter agilis. Arch Mikrobiol 78:99–117

    Google Scholar 

  • Wilson LG, Asahi T, Bandurski RS (1961) Yeast sulfate-reducing system. I. Reduction of sulfate to sulfite. J Biol Chem 236:1822–1829

    Google Scholar 

  • Wilson LG, Bierer D (1976) The formation of exchangeable sulfite from adenosine-3′-phosphate-5′-sulfatophosphate in yeast. Biochem J 158:255–270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imhoff, J.F. Occurrence and evolutionary significance of two sulfate assimilation pathways in the rhodospirillaceae. Arch. Microbiol. 132, 197–203 (1982). https://doi.org/10.1007/BF00508731

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00508731

Key words

Navigation