Decreased prostaglandin synthetase activity during kidney regeneration after folic acid or 2,4,5-triamino-6-styrylpyrimidine application

  • R. M. Ingerowski
  • F. Haux
  • F. v. Bruchhausen


Several pteridines (folic acid, xanthopterine and 2-amino-4-hydroxypteridine) as well as aminostyrylpyrimidine derivatives (2,4,5-triamino-6-styrylpyrimidine) cause kidney hypertrophy in experimental animals after a single parenteral application. The effect of several of these compounds on the in vivo and in vitro prostaglandin synthesis by rat kidney medulla was tested on the assumption that prostaglandins, via cAMP, might exert a growth limiting effect on the normal kidney. Of the renohypertrophic substances tested, only 2,4,5-triamino-6-styrylpyrimidine inhibited in vitro a highly active preparation of prostaglandin synthetase from rat kidney medulla, whereas folic acid, xanthopterine and 2-amino-4-hydroxypteridine were inactive. 2-Styrylpyridine also strongly inhibited prostaglandin synthetase but did not cause kidney hypertrophy. When the substances were first applied as a single dose parenterally, both 2,4,5-triamino-6-styrylpyrimidine and folic acid led to a large reduction of the prostaglandin synthesizing capacity of the rat kidney medulla as long as 14 days after drug application. 1-Styrylpyridine was inactive in this assay. The ability of the substances investigated to inhibit prostaglandin synthesis in vitro does not correlate with their renohypertrophic properties. The long-lasting reduction of the capacity to produce prostaglandins in vivo may be due to the increased growth rate seen after systemic treatment.

Key words

Prostaglandin synthesis Kidney hypertrophy Pteridines Renal medulla 2,4,5-triamino-6-styrylpyrimidine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brade, W., Herken, H., Merker, H.-J.: Schädigung und Regeneration renaler Tubuluszellen nach Folsäuregabe. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 262, 228–250 (1969)Google Scholar
  2. Brade, W., Herken, H., Merker, H.-J.: Regeneration of renal tubular cells after lesion by temporary ischaemia, folic acid, and 2,4,5-triamino-6-styrylpyrimidine. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 266, 95–100 (1970)Google Scholar
  3. Christ, E. J., van Dorp, D. A.: Comparative aspects of prostaglandin biosynthesis in animal tissues. Advanc. Biosc. 9, 35–38 (1973)Google Scholar
  4. Flower, R. I., Cheung, H. S., Cushman, D. W.: Quantitative determination of prostaglandins and malonaldehyde formed by the oxygenase (prostaglandin synthetase) system of bovine seminal vesicle. Prostaglandins 4, 325–351 (1973)Google Scholar
  5. Haddow, A.: In: Chemistry and biology of pteridines, p. 100. London: Churchill 1954Google Scholar
  6. Hamberg, M.: Biosynthesis of prostaglandins in the renal medulla of rabbit. FEBS Letters 5, 127–130 (1969)Google Scholar
  7. Haux, F., Ingerowski, R. M., v. Bruchhausen, F.: Prostaglandin synthetase activity in kidney medulla during the development of experimental hypertension in the rat. Naunyn-Schmiedeberg's Arch. Pharmacol. 295, 77–79 (1976)Google Scholar
  8. Horton, E. W., Thompson, C. J.: Thin layer chromatography and bioassay of prostaglandins in extracts of semen and tissues of the male reproductive tract. Brit. J. Pharmacol. 22, 183–188 (1964)Google Scholar
  9. Ingerowski, R. M.: Untersuchungen über die Beteiligung der Prostaglandine an der Wundheilung und der Gewebsproliferation. Inaugural-Diss., Med. Fachber., Freie Universität Berlin 1976Google Scholar
  10. Johnson, G. S., Friedman, R. M., Pastan, I. R.: Restoration of several morphological characteristics of normal fibroglasts in sarcoma cells treated with adenosine 3′,5′-cyclic monophosphate and its derivatives Proc. nat. Acad. Sci. (Wash.) 68, 425–429 (1971)Google Scholar
  11. Kocsis, J. J., Hernandovich, J., Silver, M. J., Smith, J. B., Ingermann, C.: Duration of inhibition of platelet prostaglandin formation and aggregation by ingested aspirin or indomethacin. Prostaglandins 3, 141–145 (1973)Google Scholar
  12. Lee, J. B., Crowshaw, K., Takman, B. H., Attrep, K. A., Gougoutas, J. Z.: The identification of prostaglandins E2, F, and A2 from rabbit kidney medulla. Biochem. J. 105, 1251–1260 (1967)Google Scholar
  13. Millar, G. C.: A solvent system for thin layer chromatographic separation of prostaglandins and blood pigment. Prostaglandins 7, 207–208 (1974)Google Scholar
  14. Nugteren, D. H., Hazelhof, E.: Isolation and properties of intermediates in prostaglandin biosynthesis. Biochim. biophys. Acta (Amst.) 326, 448–461 (1973)Google Scholar
  15. Peery, C. V., Johnson, G. S., Pastan, I.: Adenyl cyclase in normal and transformed fibroblasts in tissue culture: activation by prostaglandins. J. biol. Chem. 246, 5785–5790 (1971)Google Scholar
  16. Propping, P.: Störungen des Elektrolythenhaushalts und der Nierenfunktion durch Folsäure und andere Pteridine. Inaugural-Diss., Med. Fak., Freie Universität Berlin 1970Google Scholar
  17. Raz, A., Stern, H., Kenig-Wakshal, R.: Indomethacin and aspirin inhibition of prostaglandin E2 synthesis by sheep seminal vesicle microsome powder and seminal vesicle slices. Prostaglandins 3, 337–352 (1973)Google Scholar
  18. Sheppard, J. R.: Difference in the cyclic adenosine 3′,5′-monophosphate levels in normal and transformed cells. Nature New Biol. 236, 14–16 (1972)Google Scholar
  19. Smith, W. L., Lands, W. E. M.: Stimulation and blockade of prostaglandin biosynthesis. J. biol. Chem. 246, 6700–6702 (1971)Google Scholar
  20. Solez, K., Fox, J. A., Miller, M., Heptinstall, R. H.: Effect of indomethacin on renal inner medullary plasma flow. Prostaglandins 7, 91–98 (1974)Google Scholar
  21. Tan, W. C., Privett, O. S.: Analysis of prostaglandins in rat vesicular glands. Lipids 7, 622–624 (1972)Google Scholar
  22. Taylor, D. M., Threlfall, G., Buck, A. T.: Stimulation of renal growth in the rat by folic acid. Nature (Lond.) 212, 472–474 (1966)Google Scholar
  23. Tomlinson, R. V., Ringold, H. S., Qureshi, M. C., Forchielli, E.: Relationship between inhibition of prostaglandin synthesis and drug efficacy: support for the current theory on mode of action of the aspirin-like drugs. Biochem. biophys. Res. Commun. 46, 552–559 (1972)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • R. M. Ingerowski
    • 1
  • F. Haux
    • 1
  • F. v. Bruchhausen
    • 1
  1. 1.Pharmakologisches Institut der Freien Universität BerlinBerlin 33

Personalised recommendations