Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 296, Issue 2, pp 143–148 | Cite as

Effect of coronary perfusion rate on the hydrolysis of exogenous and endogenous acetylcholine in the isolated heart

  • H. A. Dieterich
  • K. Löffelholz
Article

Summary

  1. 1.

    The effect of perfusion rate on the hydrolysis of acetylcholine in isolated chicken hearts was studied by measuring both the spontaneous and the evoked output of endogenous acetylcholine into the perfusate in response to vagal stimulation and the arterio-venous difference of exogenous acetylcholine.

     
  2. 2.

    A decrease in the perfusion rate from 30 to 20 and 10 ml/min caused a graded and significant decline of both the spontaneous overflow of acetylcholine and the overflow evoked by stimulation of both vagus nerves (20 Hz, 1 ms, 40V) for 20 min. The spontaneous and evoked overflow at 30 ml/min were 2 and 3 times, respectively, the overflow at 10 ml/min.

     
  3. 3.

    Physostigmine (10−6M) raised both the spontaneous and the evoked acetylcholine outputs into the perfusate. The rise of the evoked output was much more pronounced at 10 ml/min (7.5-fold) than at 30 ml/min (2.5-fold) so that the differences in the output at these perfusion rates were abolished after inhibition of cholinesterase.

     
  4. 4.

    Although vagal stimulation in the presence of physostigmine caused an output of acetylcholine into the perfusate equivalent to the content of the heart determined before stimulation, no change of the cardiac acetylcholine content was observed. Thus the total acetylcholine content must have been resynthesized during the 20-min period of vagal stimulation. Physostigmine raised the acetylcholine content by the same extent, both before and after stimulation.

     
  5. 5.

    The arterio-venous difference of acetylcholine during infusion of this compound (10−7 M) for 10 min was increased from 37±8 to 56±7% (n=10) of the arterial concentration, when the perfusion rate was decreased from 30 to 10 ml/min. Physostigmine abolished the effect of the perfusion rate upon the appearance of acetylcholine in the effluent. Moreover, the arterio-venous differences were less than 5% after inhibition of cholinesterase.

     
  6. 6.

    It is concluded that extracellular inactivation of the parasympathetic transmitter of the heart is dependent on both the cholinesterase activity and the rate of the coronary flow.

     

Key words

Acetylcholine Cholinesterase Transmitter inactivation Coronary flow Isolated heart 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birks, R. I., Fitch, S. J. G.: Storage and release of acetylcholine in a sympathetic ganglion. J. Physiol. (Lond.) 240, 125–134 (1974)Google Scholar
  2. Birks, R., MacIntosh, F. C.: Acetylcholine metabolism of a sympathetic ganglion. Canad. J. Biochem. 39, 787–827 (1961)Google Scholar
  3. Brown, G. L., Feldberg, W.: The acetylcholine metabolsim of a sympathetic ganglion. J. Physiol. (Lond.) 88, 265–283 (1936)Google Scholar
  4. Brown, G. L., Gillespie, J. S.: The output of sympathetic transmitter from the spleen of the cat. J. Physiol. (Lond.) 138, 81–102 (1957)Google Scholar
  5. Collier, B.: The preferential release of newly synthesized transmitter by a sympathetic ganglion. J. Physiol. (Lond.) 205, 341–352 (1969)Google Scholar
  6. Dieterich, H. A., Kaffei, H., Kilbinger, H., Löffelholz, K.: The effects of physostigmine on cholinesterase activity, storage and release of acetylcholine in the isolated chicken heart. J. Pharmacol. exp. Ther. 199, 236–246 (1976)Google Scholar
  7. Dieterich, H. A., Löffelholz, K., Pompetzki, H.: Acetylcholine overflow from isolated perfused hearts of various species in the absence of cholinesterase inhibition. Naunyn-Schmiedeberg's Arch. Pharmacol 296, 149–152 (1977)Google Scholar
  8. Gillis, C. N., Paton, D. M.: Effects of hypothermia and anoxia on retention of noradrenaline by the cat perfused heart. Brit. J. Pharmacol. 26, 426–434 (1966)Google Scholar
  9. Graefe, K.-H.: Methodology of catecholamine transport studies: Definition of terms. In: The mechanism of neuronal and extraneuronal transport of catecholamines (D. M. Paton, ed.), pp. 7–35. New York: Raven Press 1976Google Scholar
  10. Graefe, K.-H., Bönisch, H., Trendelenburg, U.: Time-dependent changes in neuronal net uptake of noradrenaline after pretreatment with pargyline and/or reserpine. Naunyn-Schmiedebergs Arch. Pharmak. 271, 1–28 (1971)Google Scholar
  11. Green, A. L.: The kinetics of enzyme action and inhibition in intact tissue slices, with special reference to cholinesterase. J. Pharm. Pharmacol. 28, 265–274 (1976)Google Scholar
  12. Hermann, W., Graefe, K.-H.: Relationship between the uptake of 3H-(+)-metaraminol and the density of adrenergic innervation in isolated rat tissues. Naunyn-Schmiedeberg's Arch. Pharmacol. 296, 99–110 (1977)Google Scholar
  13. Hertting, G.: Effect of drugs and sympathetic denervation on noradrenaline uptake and binding in animal tissues. In: Proc. 2nd Int. Pharmacol. Meeting, Vol. 3, G. B. Koelle, W. W. Douglas, and A. Carlsson, eds., pp. 277–289. Oxford: Pergamon Press 1965Google Scholar
  14. Hertting, G., Schiefthaler, T.: Beziehung zwischen Durchflußgröße und Noradrenalinfreisetzung bei Nervenreizung der isoliert durchströmten Katzenmilz. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 246, 13–14 (1963)Google Scholar
  15. Hillarp, N. Å.: The construction and functional organization of the autonomic innervation apparatus. Acta physiol. scand. 46, Suppl. 157, 1–38 (1959)Google Scholar
  16. Huković, S., Muscholl, E.: Die Noradrenalin-Abgabe aus dem isolierten Kaninchenherzen bei sympathischer Nervenreizung und ihre pharmakologische Beeinflussung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 244, 81–96 (1962)Google Scholar
  17. Kalsner, S., Nickerson, M.: Disposition of norepinephrine and epinephrine in vascular tissue, determined by the technique of oil immersion. J. Pharmacol. exp. Ther. 165, 152–165 (1969)Google Scholar
  18. Katz, B., Miledi, R.: The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. (Lond.) 231, 549–574 (1973)Google Scholar
  19. Kilbinger, H., Löffelholz, K.: The isolated chicken heart as a tool for studying acetylcholine output in the absence of cholinesterase inhibition. J. Neural Transm. 38, 9–14 (1976)Google Scholar
  20. Kuschinsky, G., Lindmar, R., Wollert, U.: Apparatur zur Perfusion des isolierten Kaninchenherzens. In: Kursus der allgemeinen Pharmakologie und Toxikologie, p. 20. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH 1974Google Scholar
  21. Lindmar, R., Löffelholz, K.: Neuronal and extraneuronal uptake and efflux of catecholamines in the isolated rabbit heart. Naunyn-Schmiedeberg's Arch. Pharmacol. 284, 63–92 (1974)Google Scholar
  22. Lindmar, R., Muscholl, E.: Die Wirkungen von Pharmaka auf die Elimination von Noradrenalin aus der Perfusionsflüssigkeit und die Noradrenalinaufnahme in das isolierte Herz. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 469–492 (1964)Google Scholar
  23. Loewi, O.: Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch. ges. Physiol. 189, 239–242 (1921)Google Scholar
  24. Löffelholz, K., Muscholl, E.: The effects of dexamphetamine on the output of noradrenaline from isolated rabbit hearts. Naunyn-Schmiedeberg's Arch. Pharmak. 266, 393 (1970)Google Scholar
  25. Matthews, E. K.: The presynaptic effects of quarternary ammonium compounds on the acetylcholine metabolism of a sympathetic ganglion. Brit. J. Pharmacol. 26, 552–566 (1966)Google Scholar
  26. Mitchell, J. F., Silver, A.: The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J. Physiol. (Lond.) 165, 117–129 (1963)Google Scholar
  27. Potter, L. T.: Synthesis, storage and release of 14C-acetylcholine in isolated rat diaphragm muscles. J. Physiol. (Lond.) 206, 145–166 (1970)Google Scholar
  28. Taxi, J.: Morphological and cytochemical studies on the synapsis in the autonomic nervous system. In: Progress in brain research, vol. 31; mechanism of synaptic transmission, pp. 5–20. Amsterdam: Elsevier 1969Google Scholar
  29. Trendelenburg, U., Henseling, M.: Factors determining the rate of relaxation of rabbit aortic strips after an exposure to noradrenaline. Naunyn-Schmiedeberg's Arch. Pharmacol. 293, 235–244 (1976)Google Scholar
  30. Wennmalm, Å.: Quantitative evaluation of release and reuptake of adrenergic transmitter in the rabbit heart. Acta physiol. scand. 82, 432–538 (1971)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. A. Dieterich
    • 1
  • K. Löffelholz
    • 1
  1. 1.Pharmakologisches Institut der UniversitätMainzGermany

Personalised recommendations