Skip to main content
Log in

Is the solitary dark neuron a manifestation of postmortem trauma to the brain inadequately fixed by perfusion?

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

Dark neurons, classified as solitary because of their sparse occurrence, were discerned in the transitional zones between gray and white matter in various species of laboratory animals fixed by perfusion. These neurons, histologically indistinguishable from dark neurons in immersion fixed material, tended to develop when the saline perfusion was delayed or slow, the amount of the Bouin fixative was excessive, or the autopsy was performed shortly after the perfusion. Under these conditions, the white matter manifested a softer consistency and a paler color than the gray matter. These observations suggest that, as the consequence of regional differences in intensity and speed of fixation, distortion during extraction of the brain may activate a stress force in the transitional zones where incompletely fixed neurons become affected and acquire an abnormal affinity for aniline dyes and silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, L.S., Mann, J.D., Caley, D.W., Bass, N.H.: Neuronal lesions in the cerebellum following the administration of excess phenylalanine to neonatal rats. J. Neuropathol. exp. Neurol. 32, 380–393 (1973)

    Google Scholar 

  • Adrian, E.K., Jr., Smothermon, R.D.: Leucocytic infiltration into the hypoglossal nucleus following injury to the hypoglossal nerve. Anat. Rec. 166, 99–116 (1970)

    Google Scholar 

  • Bodian, D.: A new method for staining nerve fibers and nerve endings in mounted paraffin sections. Anat. Rec. 65, 89–97 (1936)

    Google Scholar 

  • Bradley, R.: The post-mortem fixation of farm animals by vascular perfusion. Res. vet. Sci. 13, 579–588 (1972)

    Google Scholar 

  • Brand, S., Mugnaini, E.: Fulminant Purkinje cell death following axotomy and its use for analysis of the dendritic arborization. Exp. Brain Res. 26, 105–119 (1976)

    Google Scholar 

  • Brightman, M.W.: Personal communication, October 1977

  • Cammermeyer, J.: Astroglial changes during retrograde atrophy of nucleus facialis in mice. J. comp. Neurol. 102, 133–150 (1955)

    Google Scholar 

  • Cammermeyer, J.: The post-mortem origin and mechanism of neuronal hyperchromatosis and nuclear pyknosis. Exp. Neurol. 2, 379–405 (1960)

    Google Scholar 

  • Cammermeyer, J.: The importance of avoiding “dark” neurons in experimental neuropathology. Acta neuropathol. 1, 245–270 (1961)

    Google Scholar 

  • Cammermeyer, J.: An evaluation of the significance of the “dark” neuron. Ergebn. Anat. Entwickl.-Gesch. 36, 1–61 (1962)

    Google Scholar 

  • Cammermeyer, J.: Peripheral chromatolysis after transection of mouse facial nerve. Acta neuropathol. 2, 213–230 (1963a)

    Google Scholar 

  • Cammermeyer, J.: Differential response of two neuron types to facial nerve transection in young and old rabbits. J. Neuropathol. exp. Neurol. 22, 594–616 (1963b)

    Google Scholar 

  • Cammermeyer, J.: Submerged heart method to prevent intracardial influx of air prior to perfusion fixation of the brain. Acta anat. 67, 321–337 (1967)

    Google Scholar 

  • Cammermeyer, J.: Peripheral vasoconstriction with epinephrine for selective fixation of the central nervous system by perfusion. Acta neuropathol. 11, 368–371 (1968)

    Google Scholar 

  • Cammermeyer, J.: Species differences in acute retrograde neuronal reaction of the facial and hypoglossal nuclei. J. Hirnforsch. 11, 13–29 (1969a)

    Google Scholar 

  • Cammermeyer, J.: Peripheral chromatolysis during the acute stage of retrograde neuronal reaction in the rabbit; in Locke, Modern neurology, pp. 273–288. Boston: Little, Brown and Comp. 1969b

    Google Scholar 

  • Cammermeyer, J.: Nonspecific changes of the central nervous system in normal and experimental material. In Bourne: The structure and function of nervous tissue, vol. 6, pp. 131–251. New York: Academic Press 1972

    Google Scholar 

  • Cammermeyer, J.: The effect of postmortem trauma on neuronal cell types stained histochemically for phospholipids. Exp. Neurol. 46, 616–633 (1975a)

    Google Scholar 

  • Cammermeyer, J.: Histochemical phospholipid reaction in ischemic neurons as an indication of exposure to postmortem trauma. Exp. Neurol. 49, 252–271 (1975b)

    Google Scholar 

  • Cammermeyer, J.: Cerebral fat embolism with focal siderosis and pericapillary hemorrhages after intraperitoneal injection of oil in cats terminally fixed by perfusion. Exp. Neurol. 55, 694–708 (1977)

    Google Scholar 

  • Campbell, B., Novick, R.: A quantitative method for the study of chromatolysis. Proc. Soc. exp. Biol. Med. 61, 425–427 (1946)

    Google Scholar 

  • Campos-Ortega, J.A., Hayhow, W.R., Clüver, P.F. de V.: The descending projections from the cortical visual fields of Macaca mulatta with particular reference to the question of a corticolateral geniculate pathway. Brain Behav. Evol. 3, 368–414 (1970)

    Google Scholar 

  • Cavanagh, J.G., Kyu, M.H.: Type II Alzheimer change experimentally produced in astrocytes in the rat. J. Neurol. Sci. 12, 63–75 (1971)

    Google Scholar 

  • Cerf, J.A., Chacko, L.W.: Retrograde reaction in motoneuron dendrites following ventral root section in the frog. J. comp. Neurol. 109, 205–219 (1958)

    Google Scholar 

  • Chang, L.W., Dudley, A.W., Jr., Lee, Y.K., Katz, J.: Ultrastructural changes in the nervous system after chronic exposure to halothane. Exp. neurol. 45, 209–219 (1974a)

    Google Scholar 

  • Chang, L.W., Yamaguchi, S., Dudley, A.W. Jr.: Neurological changes in cats following long-term diet of mercury contaminated tuna. Acta neuropathol. 27, 171–176 (1974b)

    Google Scholar 

  • Cotte, G.: Étude critique sur la signification de l'état hyperchromophile des cellules nerveuses. Arch. Biol. (Liège) 68, 297–380 (1957)

    Google Scholar 

  • Cowdry, E.V.: The structure of chromophile cells of the nervous system. Contrib. Embryol. Carnegie Inst. Washington 11, 29–43 (1916)

    Google Scholar 

  • Dagnelie, J.: Contribution à l'étude morphologique et experimental des constituants cytoplasmique du neurone. Arch. Biol. (Liège) 43, 235–303 (1932)

    Google Scholar 

  • Desclin, J.C.: Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res. 77, 365–384 (1974)

    Google Scholar 

  • Desclin, J.C., Escubi, J.: Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods. Brain Res. 77, 349–364 (1974)

    Google Scholar 

  • Desclin, J.C., Escubi, J.: An additional silver impregnation method for demonstration of degenerating nerve cells and processes in the central nervous system. Brain Res. 93, 25–39 (1975)

    Google Scholar 

  • Diemer, N.H.: Size and density of oligodendroglial nuclei in rats with CC14-induced liver disease. Neurobiology 5, 197–206 (1975)

    Google Scholar 

  • Diemer, N.H.: Glial and neuronal alterations in the corpus striatum of rats with CC14-induced liver disease. Acta neurol. scand. 55, 16–32 (1976)

    Google Scholar 

  • Fuxe, K., Owman, C.: Cellular localization of monoamines in the area postrema of certain mammals. J. comp. Neurol. 125, 337–353 (1965)

    Google Scholar 

  • Gaik, G.C., Farbman, A.I.: The chicken trigeminal ganglion. II. Fine structure of the neurons during development. J. Morphol. 141, 57–76 (1973)

    Google Scholar 

  • Gilden, D.H., Friedman, H.M., Nathanson, N.: Tamiami virus-induced cerebellar heterotopia. J. Neuropathol. exp. Neurol. 33, 29–41 (1974)

    Google Scholar 

  • González-Aguilar, F., de Robertis, E.: A formalin-perfusion fixation method for histophysiological study of the central nervous system with the electron microscope. Neurology 13, 758–771 (1963)

    Google Scholar 

  • Grant, G.: Silver impregnation of degenerating dendrites, cells and axons central to axonal transection. Exp. Brain Res. Res. 6, 284–293 (1968)

    Google Scholar 

  • Grant, G.: Neuronal changes central to the site of axon transection. A method for the identification of retrograde changes in perikarya, dendrites and axons by silver impregnation. In: Nauta and Ebbeson: Contemporary research methods in neuroanatomy, pp. 173–185. New York-Heidelberg-Berlin: Springer-Verlag 1970

    Google Scholar 

  • Grant, G., Aldskogius, H.: Silver impregnation of degenerating dendrites, cells and axons central to axonal transection. Exp. Brain Res. 3, 150–162 (1967)

    Google Scholar 

  • Grant, G., Landgren, S., Silfvenius, H.: Columnar distribution of U-fibres from the postcruciate cerebral projection area of the cat's group I muscle afferents. Exp. Brain Res. 24, 57–74 (1975)

    Google Scholar 

  • Grant, G., Westman, J.: The lateral cervical nucleus in the cat. IV. A light and electron microscopical study after midbrain lesions with demonstration of indirect Wallerian degeneration at the ultrastructural level. Exp. Brain Res. 7, 51–67 (1969)

    Google Scholar 

  • Gray, E.G.: The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations. J. Anat. 95, 345–356 (1961)

    Google Scholar 

  • Green, M.R., Pastewka, J.V.: Simultaneous differential staining by a cationic carbocyanine dye of nucleic acids, proteins and conjugated proteins. I. Phosphoproteins. J. Histochem. Cytochem. 22, 767–781 (1974)

    Google Scholar 

  • Heimer, L.: Synaptic distribution of centripetal and centrifugal nerve fibres in the olfactory system of the rat. An experimental anatomical study. J. Anat. (Lond.) 103, 413–432 (1968)

    Google Scholar 

  • Johnson, J.E., Jr.: The occurrence of dark neurons in the normal and deafferented lateral vestibular nucleus in the rat. Acta neuropathol. 31, 117–127 (1975)

    Google Scholar 

  • Jones, E.G., Powell, T.P.S.: An electron microscopic study of terminal degeneration in the neocortex of the cat. Philos. Trans. roy. Soc. Lond. B 257, 29–43 (1970)

    Google Scholar 

  • Léránth, C., Hámori, J.: “Dark” Purkinje cells of the cerebellar cortex. Acta biol. Acad. Sci. hung. 21, 405–419 (1970)

    Google Scholar 

  • Lund, R.D.: Fine structural changes within the dorsal lateral geniculate body of the rat following lesions of the visual cortex. Anat. Rec. 63, 220 (1969)

    Google Scholar 

  • Malm, M.: p-Toluenesulphonic acid as a fixative. Quart. J. microsc. Sci. 103, 163–171 (1962)

    Google Scholar 

  • Matano, S.: A comparative neurological study on the axon reaction of amphibian motoneurons. M.J. Osaka Univ. 13, 85–96 (1962)

    Google Scholar 

  • Miller, R.A.: A morphological and experimental study of chromophilic neurons in the cerebral cortex. Amer. J. Anat. 84, 201–229 (1949)

    Google Scholar 

  • Nissl, F.: Ueber die Veränderungen der Ganglienzellen am Facialiskern des Kaninchens nach Ausreissung der Nerven. Allg. Z. Psychiat. 48, 197–198 (1891)

    Google Scholar 

  • Ohanian, C.: Influence of fixation on the cytochemistry of neurons. Acta histochem. (Jena) 132, 117–134 (1969)

    Google Scholar 

  • Palay, S.L., McGee-Russell, S.M., Gordon, S., Grillo, M.A.: Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J. Cell Biol. 12, 385–410 (1962)

    Google Scholar 

  • Peach, R.: Fine structural features of light and dark cells in the trigeminal ganglion of the rat. J. Neurocytol. 1, 151–160 (1972)

    Google Scholar 

  • Pinching, A.J., Powell, T.P.S.: Ultrastructural features of transneuronal cell degeneration in the olfactory system. J. Cell Sci. 8, 253–287 (1971)

    Google Scholar 

  • Scharrer, J.-H.: On dark and light cells in the brain and in the liver. Anat. Rec. 72, 53–65 (1938)

    Google Scholar 

  • Schwarzacher, H.G.: Der Cholesteringehalt motorischer Nervenzellen während der axonalen Reaktion. Acta anat. 32, 51–65 (1958)

    Google Scholar 

  • Souza Queiroz, L. de, Paula Eduardo, R.M. de: Occurrence of dark neurons in living mechanically injured rat neocortex. Acta neuropathol. 38, 45–48 (1977)

    Google Scholar 

  • Stensaas, S.S., Edwards, C.Q., Stensaas, L.J.: An experimental study of hyperchromic nerve cells in the cerebral cortex. Exp. Neurol. 36, 472–487 (1972)

    Google Scholar 

  • Sumner, B.E.H.: Quantitative ultrastructural observations on the inhibited recovery of the hypoglossal nucleus from the axotomy response when regeneration of the hypoglossal nerve is prevented. Exp. Brain Res. 26, 141–150 (1976)

    Google Scholar 

  • Takano, I.: Electron microscopic studies on retrograde chromatolysis in the hypoglossal nucleus and changes in the hypoglossal nerve following its severance and ligation. Okajimas Folia anat. japon. 40, 1–69 (1964)

    Google Scholar 

  • Thomas, E., Pearse, A.G.E.: The solitary active cells. Histochemical demonstration of damage-resistant nerve cells with TPN-diaphorase reaction. Acta neuropathol. 3, 238–249 (1963/1964)

    Google Scholar 

  • Torvik, A., Heding, A.: Histological studies on the effect of actinomycin D on retrograde cell reaction in the facial nucleus of mice. Acta neuropathol. 9, 146–157 (1967)

    Google Scholar 

  • Torvik, A., Skjörten, F.: Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions. Acta neuropathol. 17, 248–264 (1971)

    Google Scholar 

  • Torvik, A., Söreide, A.J.: Nerve cell regeneration after axon lesions in newborn rabbits. J. Neuropathol. exp. Neurol. 31, 683–695 (1972)

    Google Scholar 

  • Turner, J.: An account of the nerve-cells in thirty three cases of insanity with special reference to those of the spinal ganglia. Brain 26, 27–70 (1903)

    Google Scholar 

  • Van Harreveld, A., Steiner, J.: Extracellular space in frozen and ethanol substituted central nervous tissue. Anat. Rec. 166, 117–130 (1970)

    Google Scholar 

  • Westrum, L.E., Lund, R.D.: Formalin perfusion for correlative light- and electron-microscopical studies of the nervous system. J. Cell Sci. 1, 229–238 (1966)

    Google Scholar 

  • Wong-Riley, M.T.T.: Changes in the dorsal lateral geniculate nucleus of the squirrel monkey after unilateral ablation of the visual cortex. J. comp. Neurol. 146, 519–548 (1972)

    Google Scholar 

  • Wright, G., Sanderson, J.M.: Improved method for fixation of dog brain by vascular perfusion. J. Pathol. 100, 295–305 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cammermeyer, J. Is the solitary dark neuron a manifestation of postmortem trauma to the brain inadequately fixed by perfusion?. Histochemistry 56, 97–115 (1978). https://doi.org/10.1007/BF00508437

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00508437

Keywords

Navigation