Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 294, Issue 3, pp 271–275 | Cite as

Influence of papaverine derivatives on phosphodiesterase activity, cyclic 3′,5′-AMP levels and relaxing effect on rabbit ileum

  • S. F. Berndt
  • H.-U. Schulz
  • K. Stock


The correlations between the relaxing effect of papaverine derivatives, inhibition of low Km-phosphodiesterase (cAMP-PDE=EC activity and cyclic 3′,5′-AMP (cAMP) levels in isolated rabbit ileum were investigated. There was a strong correlation between the relaxing effect, inhibition of PDE activity and cAMP content for eupaverine, ethylpapaverine and papaverine. Eupaverine was the most effective relaxing agent (I50=7.5 μM) and the most potent inhibitor of PDE activity (Ki=0.6 μM), followed by ethylpapaverine (I50=10 μM); Ki=0.8 μM) and papaverine (I50=20 μM; Ki=2 μM). In contrast, there was a strong relaxing effect (I50=6 μM) but only slight inhibition of PDE activity (Ki=350 μM) by tetrahydropapaveroline (THP). The adenylate cyclase stimulating effect of THP which was shown by others is most likely the reason for comparatively higher cAMP levels, which were found to be elevated about seven times over basal levels of 0.35 nmoles/g wet weight, and effective relaxation. Relaxation could be induced by exogenously added cAMP (I50=45 μM) and dibutyryl-cAMP (I50=450 μM). Our results support the assumption that smooth muscle relaxation in rabbit ileum is mediated by cAMP. Some of these observations have been published in abstract form (Schulz and Berndt, 1972).

Key words

Rabbit ileum Relaxation cAMP Phosphodiesterase Papaverine derivatives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, R. G. G.: Cyclic AMP and calium, ions in mechanical and metabolic responses of smooth muscles; influence of some hormones and drugs. Acta physiol. scand., Suppl. 382, 1–59 (1972)Google Scholar
  2. Armah, I. B., Jakovljevic, V., Ochlich, P., Rohte, O.: Experiments to classify the β-receptor-stimulating properties of tetrahydropapaveroline. Naunyn-Schmiedeberg's Arch. Pharmacol. 287, Suppl. R 21 (1975)Google Scholar
  3. Bär, H. P.: Cyclic nucleotides and smooth muscle. In: Adv. cyclic nucl. res., Vol. 4 (P. Greengard and G. A. Robison, eds.), pp. 195–237. New York: Raven Press 1974Google Scholar
  4. Berndt, S. F., Schwabe, U.: Effect of psychotropic drugs on phosphodiesterase and cyclic AMP level in rat brain in vivo. Brain Res. 63, 303–312 (1973)Google Scholar
  5. Berridge, M. J.: The interaction of cyclic nucleotides and calcium in the control of cellular activity. In: Adv. cyclic nucl. res., Vol. 6 (P. Greengard and G. A. Robison, eds.), pp. 1–98. New York: Raven Press 1975Google Scholar
  6. Berti, F., Sirtori, C., Usardi, M. M.: Cyclic 3′,5′-AMP, dibutyryl derivative and theophylline effects on the rat portal vein in vitro. Arch. int. Pharmacodyn. 184, 328–333 (1970)Google Scholar
  7. Brown, B. L., Albano, I. D. M., Ekins, R. P., Sgherzi, A. M., Tampion, W.: A simple and sensitive saturation assay method for the measurement of adenosine 3′-5′-cyclic monophosphate. Biochem. J. 121, 561–562 (1971)Google Scholar
  8. Demesy, F., Stoclet, J. C.: On the mechanism of papaverine action on the control of vascular smooth muscle contractile activity by extracellular calcium. J. Pharm. Pharmacol. 23, 712–713 (1971)Google Scholar
  9. Holtz, P., Stock, K., Westermann, E.: Pharmakologie des Tetrahydropapaverolins und seine Entstchung aus Dopamin. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak. 248, 387–405 (1964)Google Scholar
  10. Kawasaki, A., Kashimoto, T., Yoshida, H.: Effects of 3′-5′-cyclic adenosine monophosphate and its dibutyryl derivative on the motility of isolated rat ileum. Jap. J. Pharmacol. 19, 494–501 (1969)Google Scholar
  11. Kim, T. S., Shulman, J., Levine, R.: Relaxant effect of cyclic adenosine 3′,5′-monophosphate on the isolated rabbit ileum. J. Pharmacol. exp. Ther. 163, 36–42 (1968)Google Scholar
  12. Kukovetz, W. R., Pöch, G.: Inhibition of cyclic 3′,5′-nucleotidephosphodiesterase as a possible mode of action of papaverine and similarly acting drugs. Naunyn-Schmiedeberg's Arch. Pharmacol. 267, 189–194 (1970)Google Scholar
  13. Lowry, O. H., Rosebrough, N. I., Farr, A. L., Randall, R. I.: Protein measurement with the Folin Phenol Reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  14. Pöch, G., Kukovetz, W. R.: Papaverine-induced inhibition of phosphodiesterase activity in various mammalian tissues. Life Sci. 10, pt I. 133–144 (1971)Google Scholar
  15. Pöch, G., Juan, H., Kukovetz, W. R.: Einfluß von herz-und gefäßwirksamen Substanzen auf die Aktivität der Phosphodiesterase. Naunyn-Schmiedebergs Arch. Pharmak. 264, 293–294 (1969)Google Scholar
  16. Rasmussen, H.: Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 170, 404–412 (1970)Google Scholar
  17. Schulz, H.-U., Berndt, S. F.: Effects of papaverine derivatives on phosphodiesterase activity, cyclic 3′,5′-AMP content and relaxation of rabbit ileum. Fifth International Congress on Pharmacology, Abstracts, 1972Google Scholar
  18. Sheppard, H., Burghardt, C. R.: Effect of tetrahydroisoquinoline derivatives on the adenylate cyclases of the caudate nucleus (dopamine-type) and erythrocyte (β-type) of the rat. Res. Commun. Chem. Path. Pharmacol. 8, 527–534 (1974)Google Scholar
  19. Sutherland, E. W., Rall, T. W., Menon, T.: Adenyl cyclase: I. Distribution, preparation, and properties. J. biol. Chem. 237, 1220–1227 (1962)Google Scholar
  20. Thompson, W. J., Appleman, M. M.: Multiple cyclic nucleotide phosphodiesterase activities from rat brain. biochemistry 10, 311–316 (1971)Google Scholar
  21. Triner, L., Vulliemoz, Y., Schwartz, J., Nahas, G. G.: Cyclic phosphodiesterase activity and the action of papaverine. Biochem. biophys. Res. Commun. 40, 64–69 (1970)Google Scholar
  22. Triner, L., Vulliemoz, Y., Verosky, M., Nahas, G. G.: The effect of catecholamines on adenyl cyclase activity in rat uterus. Life Sci. 9, 707–712 (1970)Google Scholar
  23. Triner, L., Nahas, G. G., Vulliemoz, Y., Overweg, N. I. A., Verosky, M., Habit, D. V., Ngai, S. H.: Cyclic AMP and smooth muscle function. Ann. N. Y. Acad. Sci. 185, 458–477 (1971)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • S. F. Berndt
    • 1
  • H.-U. Schulz
    • 1
  • K. Stock
    • 1
  1. 1.Institut für PharmakologieMedizinische Hochschule HannoverHannover 61Federal Republic of Germany

Personalised recommendations