Skip to main content
Log in

Rheology of Penicillium chrysogenum pellet suspensions

  • Biotechnology
  • Published:
European journal of applied microbiology and biotechnology Aims and scope Submit manuscript

Summary

Shear diagrams of Penicillium chrysogenum pellet suspensions were measured in a Couette viscosimeter, developed for pellet suspensions as functions of the pellet volumetric fraction. At low pellet concentrations the suspensions show pseudoplastic behavior. The variation of the apparent viscosity, η s, with the relative pellet volume fraction E X/E m and the shear rate D can be described by the relationship:

$$\eta _s = \left( {\frac{{E_X /E_M }}{{1 - E_X /E_M }}} \right)^2 C^2 D^{ - b(E_X /E_M )} $$

where E X is the pellet volume fraction and E m the maximum pellet volume fraction in the medium, C and b ≃ 1 are constants.

The relationship holds true in the range η s ⩾ 20 η s, D≥10 s−1 and E X/E m<0.08, where η 0 is the viscosity of the cellfree medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Fitting parameter in Eq. (4) -and with different meaning -in Eq. (5) and van der Waals parameter Pa m6 mol2 in Eq. (10)

b :

Fitting parameter in Eq. (4) -and van der Waals parameter m3 mol−1 in Eq. (10) and fitting parameter with different Meaning in Eq. (14) and -elsewhere

C :

Model parameter (Pa s)0.5

C 1 :

Fitting parameter in Eq. (2) (Pa s)0.5

C 2 :

Fitting parameter in Eq. (2) (Pa s)0.5

C 3 :

Fitting parameter in Eq. (3) Pa m3

c′:

Coefficient in Eq. (14) and (17) (Pa)−1s−1

D :

Shear rate s−1

d :

Particle diameter m

E :

Power W

E m :

Maximum pellet volume fraction -

E x :

Actual pellet volume fraction -

h s2 :

Fitting parameter in Eq. (5)

K c :

Limiting viscosity in Eq. (1) Pa s

k :

Consistency index Pa sm

m :

Flow behavior index -

n :

Mole number -

n′:

Number of pellets -

P :

Pressure Pa

P p :

Pressure of pellets exerted Pa on the wall

R :

Gas constant JK−1mol−1

R′:

Coefficient kJ m−3

T :

Temperature

V :

(Medium) volume m3

V p :

Pellet volume m3

η:

Dynamic viscosity Pa s

η s :

Apparent viscosity of pellet Pa s suspension

η σ :

Viscosity of cell-free medium Pa s

η r=η s η 0 :

Relative viscosity -

τ:

Sheer stress Pa

τ0 :

Yield stress Pa

References

  • Deindoerfer FH, Gaden EL (1955) Effects of liquid physical properties on oxygen transfer in penicillin fermentation. Appl Microbiol 3: 253–257

    Google Scholar 

  • Deindoerfer FH, West JM (1960a) Rheological examination of some fermentation broths. J Microbiol Biochem Technol Eng 2: 165–175

    Google Scholar 

  • Deindoerfer FH, West JM (1960b) Rheological properties of fermentation broths. Adv Appl Microbiol 2: 265–273

    Google Scholar 

  • Eilers H (1941) Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration. Kolloid Z 97: 313–321

    Google Scholar 

  • Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann Phys IV 19: 289–306

    Google Scholar 

  • Einstein A (1911) Berichtigung zu meiner Arbeit: “Eine neue Bestimmung der Moleküldimensionen”. Ann Phys IV 34: 591–592

    Google Scholar 

  • Einstein A (1920) Bemerkung zu der Abhandlung von W. R. Heß “Beitrag zur Theorie der Viskosität heterogener Systeme”. Kolloid Z 27: 137

    Google Scholar 

  • El-Temtamy S, Farhat L, Nour el-din A, Gaber A (1982) Non-Newtonian behaviour of yeast suspensions. Eur J Appl Microbiol Biotechnol 15: 156–160

    Google Scholar 

  • König B, Schügerl K, Seewald C (1982) Strategies for Penicillin Fermentation in Tower-Loop Reactors. Biotechnol Bioeng 24: 259–280

    Google Scholar 

  • Langer G, Werner U (1981) Messung der Viskosität von Suspensionen. Chem Ing Tech 53: 132–133

    Google Scholar 

  • Meskat W (1957) In: Hengstenberg et al. (eds) Viskosimetrie in Messen und Regeln. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Metz B (1976) From Pulp to Pellet. Dissertation, Technische Hochschule Delft

  • Metz B, Kossen NWF, van Suijdam JC (1979) The rheology of mould suspensions. Adv Biochem Eng 11: 103–156

    Google Scholar 

  • Padberg F (1982) Viskositätsmessung an Kristallsuspensionen. Chem Ing Tech 54: 772–773

    Google Scholar 

  • Reuß M, Josić D, Popović M, Bronn WK (1979) Viskosity of yeast suspensions. Eur J Appl Microbiol Biotechnol 8: 167–175

    Google Scholar 

  • Rutgers IR (1962) Relative viscosity and concentration. Rheologica Acta 2: 305–348

    Google Scholar 

  • Schügerl K, Merz M, Fetting F (1961) Rheologische Eigenschaften von gasdurchströmten Fließbettsystemen. Chem Eng Sci 15: 1–38

    Google Scholar 

  • Shimmons BW, Svrcek WY, Zajic JE (1976) Cell concentration control by viscosity. Biotechnol Bioeng 18: 1793–1805

    Google Scholar 

  • van Suijdam JC (1980) Mycelial pellet suspensions. Dissertation, Technische Hochschule Delft

  • Vand V (1948) Viscosity of solutions and suspensions. I. Theory. J. Phys. Colloid Chem 52: 277–299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittler, R., Matthes, R. & Schügerl, K. Rheology of Penicillium chrysogenum pellet suspensions. European J. Appl. Microbiol. Biotechnol. 18, 17–23 (1983). https://doi.org/10.1007/BF00508124

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00508124

Keywords

Navigation