Selective inhibition of liver-cell proliferation by CFT 1201 and SKF 525 A

Studies on growth processes induced by drugs and by partial hepatectomy
  • R. Schulte-Hermann
  • I. Schlicht
  • W. Koransky
  • C. Leberl
  • C. Eulenstedt
  • M. Zimek


Of the xenobiotic compounds which are known to induce liver growth some are substrates of hepatic microsomal mixed-function oxidase. The aim of the present study was to check on whether normal functioning of this enzyme system is a prerequisite for growth induction by α-HCH***, BHT, and phenobarbital. Several biochemical and morphological tests were used to determine the degree of hyperplasia and hypertrophy induced in rat liver by these drugs, with and without concomitant application of two inhibitors of microsomal mixed-function oxidase: SKF 525 A and CFT 1201.

In the case of α-HCH, CFT 1201 prevents the hyperplastic but not the hypertrophic response of rat liver to the drug: augmentation of DNA content, enhanced incorporation of 3H-thymidine into DNA, increased mitotic rate, and increase in the number of nuclei synthesizing DNA all fail to occur while organ weight still increases. The same type of interference is seen with the growth-inducing effects of BHT and phenobarbital. SKF 525 A likewise inhibits cell proliferation induced by α-HCH.

In contrast, CFT 1201 does not block cell proliferation in response to partial hepatectomy or to hepatocellular damage produced by thioacetamide, nor does it inhibit the hyperplastic response of rat liver to high doses of isoproterenol.

It is concluded, therefore, that CFT 1201 does not interfere with processes essential for hepatocyte replication but rather acts selectively if induction of the replicative process is triggered by certain drugs. The nature of the CFT 1201-sensitive step is discussed.

Key words

Drug-Induced Liver Growth Liver Hyperplasia Cytochrome P450 Inhibitors SKF 525 A, CFT 1201 Prereplicative Phase 



α-1,2,3,4,5,6-hexachlorocyclohexane = α-benzenehexachloride

CFT 1201

β-diethylaminoethylphenyldiallylacetate · HCl

SKF 525 A

β-diethylaminoethyldiphenylpropylacetate · HCl






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anders, M. W.: Enhancement and inhibition of drug metabolism. Ann. Rev. Pharmacol. 11, 37 (1971).Google Scholar
  2. 2.
    Argyris, Th. S.: Liver growth associated with the induction of aminopyrine demethylase activity after phenobarbital treatment in adult male rats. J. Pharmacol. exp. Ther. 164, 405 (1968).Google Scholar
  3. 3.
    Axelrod, J., Reichenthal, J., Brodie, B. B.: Mechanism of the potentiating action of β-diethylaminoethyl diphenylpropylacetate. J. Pharmacol. exp. Ther. 112, 49 (1954).Google Scholar
  4. 4.
    Barka, T.: Induced cell proliferation: the effect of isoproterenol. Exp. Cell Res. 37, 662 (1965).Google Scholar
  5. 5.
    —, Popper, H.: Liver enlargement and drug toxicity. Medicine (Baltimore) 46, 103 (1967).Google Scholar
  6. 6.
    Brock, N., Hohorst, H. J.: Metabolism of cyclophosphamide. Cancer. Res. 20, 900 (1967).Google Scholar
  7. 7.
    Brodie, B. B., Reid, W. D., Cho, A. K., Sipes, G., Krishna, G., Gillette, J. R.: Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc. nat. Acad. Sci. (Wash.) 68, 160 (1971)Google Scholar
  8. 8.
    Bucher, N. L. R.: Regeneration of mammalian liver. Int. Rev. Cytol. 15, 245 (1963).Google Scholar
  9. 9.
    Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315 (1956).Google Scholar
  10. 10.
    Cooper, J. R., Axelrod, J., Brodie, B. B.: Inhibitory effects of β-diethylaminoethyl diphenylpropylacetate on a variety of drug metabolic pathways in vitro. J. Pharmacol. exp. Ther. 112, 55 (1954).Google Scholar
  11. 11.
    Fitzhugh, O. G., Nelson, A. A., Frawley, J. P.: The chronic toxicities of technical benzene hexachloride and its alpha, beta and gamma isomers. J. Pharmacol. exp. Ther. 100, 59 (1950).Google Scholar
  12. 12.
    Fujioka, M., Koga, M., Lieberman, J.: Metabolism of RNA after partial hepatectomy. J. biol. Chem. 238, 3401 (1963).Google Scholar
  13. 13.
    Gilbert, D., Golberg, L.: BHT oxidase. A liver-microsomal enzyme induced by the treatment of rats with butylated hydroxytoluene. Food Cosmet. Toxicol. 5, 481 (1967).Google Scholar
  14. 14.
    Giudice, G., Kenney, F. T., Novelli, G. D.: Effect of puromycin on deoxyribonucleic acid synthesis by regenerating rat liver. Biochim. biophys. Acta (Amst.) 87, 171 (1964).Google Scholar
  15. 15.
    Golberg, L.: Liver enlargement produced by drugs: its significance. Proc. Eur. Soc. for the Study of Drug Toxicity, Vol VII, p. 171 (1966).Google Scholar
  16. 16.
    Grover, P. L., Sims, P.: Interactions of the K-region epoxides of phenanthrene and dibenz-(a,h) anthracene with nucleic acids and histone. Biochem. Pharmacol. 19, 2251 (1970).Google Scholar
  17. 17.
    Hakim, R., Fujimoto, J. M.: Inhibition of renal tubular transport of morphine by β-diethylaminoethyl diphenylpropylacetate in the chicken. Biochem. Pharmacol. 20, 2647 (1971).Google Scholar
  18. 18.
    Henderson, P. T., Dewaide, J. H.: Metabolism of drugs in isolated rat hepatocytes. Biochem. Pharmacol. 18, 2087 (1969).Google Scholar
  19. 19.
    Hertting, G.: The fate of 3H-isoproterenol in the rat. Biochem. Pharmacol. 13, 1119 (1964).Google Scholar
  20. 20.
    Higgins, G. M., Anderson, R. M.: Experimental pathology of the liver. Restoration of the liver in the white rat following partial surgical removal. Arch. Path. 12, 186 (1931).Google Scholar
  21. 21.
    Kizer, D. E., Howell, B. A.: Stimulation of DNA synthesis and AMP deaminase activity in rat hearts during isoproterenol-induced myocardial infarction. Chem.-Biol. Interact. 2, 235 (1970).Google Scholar
  22. 22.
    Koransky, W., Magour, S., Merker, H. J., Schlicht, J., Schulte-Hermann, R.: Influence of inducing substances on growth of liver and microsomal electron transport systems. Proc. 3rd Int. Pharm. Meet. 1966, Sao Paulo, Vol. IV, p. 55. Oxford: Pergamon Press 1967.Google Scholar
  23. 23.
    ——, Noack, G., Schulte-Hermann, R.: Über den Einfluß induzierender Substanzen auf Fremdstoff-Oxydasen und andere Redoxenzyme der Leber. Naunyn-Schmiedebergs Arch. Pharmak. 263, 281 (1969).Google Scholar
  24. 24.
    Kunz, W., Schaude, G., Schmid, W., Siess, M.: Lebervergrößerung durch Fremdstoffe. Naunyn-Schmiedebergs Arch. Pharmak. 254, 470 (1966).Google Scholar
  25. 25.
    —, Schnieders, B.: RNA metabolism and induction of extramicrosomal enzymes during liver enlargement due to drugs. Proc. IV. Int. Congr. Pharm., Basel 1969, Vol. IV, p. 326. Basel-Stuttgart: Schwabe & Co. 1970.Google Scholar
  26. 26.
    Lee, J. P., Yamamura, H. J., Dixon, R. L.: The effect of β-diethylaminoethyl-diphenylpropylacetate on biological membranes. Biochem. Pharmacol. 17, 1671 (1968).Google Scholar
  27. 27.
    Magee, P. N.: Mechanism of drug-induced carcinogenesis. Proc. 2nd Int. Pharm. Meet., Prague, Vol. 4, p. 343. New York: Pergamon 1965.Google Scholar
  28. 28.
    Maibauer, D., Neubert, D., Rottka, H.: Pharmakologische Untersuchungen bei der experimentellen Leberverfettung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 234, 474 (1958).Google Scholar
  29. 29.
    McLean, A. E. M., McLean, E. K.: The effect of diet and 1,1,1-trichloro-2,2-bis-(p-chlorophenyl) ethane (DDT) on microsomal hydroxylating enzymes and on sensitivity of rats to carbon tetrachloride poisoning. Biochem. J. 100, 564 (1966).Google Scholar
  30. 30.
    Neubert, D., Helge, H., Bass, R.: Einbau von Thymidin in die Deosoxyribonucleinsäure von Mitochondrien. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 252, 258 (1965).Google Scholar
  31. 31.
    —, Herken, H.: Wirkungssteigerung von Schlafmitteln durch den Phenyldiallylessigsäureester des Diäthylaminoäthanols. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 225, 453 (1955).Google Scholar
  32. 32.
    —, Timmler, R.: Einfluß einiger Phenylessigsäurederivate (CFT 1201, SKF 525 A) auf den Einbau von 1-C14-dl-Alanin in Mikrosomenproteine. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 238, 358 (1960).Google Scholar
  33. 33.
    Oberdisse, E., Hochstrate, C., Merker, H. J.: Influence of drugs on induction of enzymes involved in DNA metabolism. Proc. IV. Int. Congr. Pharm., Basel 1969, Vol. IV, p. 318. Basel-Stuttgart: Schwabe & Co. 1970.Google Scholar
  34. 34.
    Pascal, G., Durand, G., Penot, E.: Influence de l'ingestion de ditertio-butylhydroxytoluène (BHT) sur la croissance corporelle et sur la composition du tissu hépatique du rat blanc. Arch. Sci. Physiol. 24, 37 (1970).Google Scholar
  35. 35.
    Paulini, K., Benecke, G., Kulka, R.: Lebervergrößerung durch Phenobarbital in Abhängigkeit vom Lebensalter. Beitr. path. Anat. 141, 327 (1970).Google Scholar
  36. 36.
    Rogers, L. A., Dixon, R. L., Fouts, J. R.: Effects of SKF 525 A on hepatic glykogen and rate of hepatic drug metabolism. Biochem. Pharmacol. 12, 341 (1963).Google Scholar
  37. 37.
    Schenkman, J. B., Remmer, H., Estabrook, R. W.: Spectral studies of drug interaction with hepatic microsomal cytochrome. Molec. Pharmacol. 3, 113 (1967).Google Scholar
  38. 38.
    Schlicht, J.: Autoradiographische und radiochromatographische Untersuchungen der Verteilung und des Stoffwechsels von Thioacetamid. Naunyn-Schmiedebergs Arch. Pharmak. 268, 310 (1971).Google Scholar
  39. 39.
    —, Koransky, W., Magour, S., Schulte-Hermann, R.: Größe und DNS-Synthese der Leber unter dem Einfluß körperfremder Stoffe. Naunyn-Schmiedebergs Arch. Pharmak. 261, 26 (1968).Google Scholar
  40. 40.
    Schulte-Hermann, R.: Einfluß körperfremder Stoffe auf Enzyme des Arznei-mittelstoffwechsels und auf Wachstumsprozesse der Leber. Diss., Freie Universität Berlin 1968.Google Scholar
  41. 41.
    —, Koransky, W., Leberl, C., Noack, G.: Hyperplasia and hypertrophy of rat liver induced by α-hexachlorocyclohexane and butylhydroxytoluene. Retention of the hyperplasia during involution of the enlarged organ. Virchows Arch., Abt. B, Zellpath. 9, 125 (1971).Google Scholar
  42. 42.
    Schulte-Hermann, R., Leberl, C.: Einfluß des Tagesrhythmus auf Größe und Thymidin-Einbau der Leber nach Stimulierung durch α-Hexachlorcyclohexan. (In Vorbereitung.)Google Scholar
  43. 43.
    Schulte-Hermann, R., Noack, G., Leberl, C.: Dosisabhängigkeit der stimulierenden Wirkung von α-Hexachlorcyclohexan auf Leberwachstum und Aminopyrin-Demethylierung. (In Vorbereitung.)Google Scholar
  44. 44.
    —, Thom, R., Schlicht, I., Koransky, W.: Zahl und Ploidiegrad der Zellkerne der Leber unter dem Einfluß körperfremder Stoffe. Naunyn-Schmiedebergs Arch. Pharmak. 261, 42 (1968).Google Scholar
  45. 45.
    Slater, T. F., Sawyer, B. C.: The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. General features of the systems used. Biochem. J. 123, 805 (1971).Google Scholar
  46. 46.
    Stanton, H. C., Bowman, Z., Cooper, C. M.: Effects of monoamine oxidase inhibitors on isoproterenol-induced cardiomegaly in rats. Toxicol. appl. Pharmacol. 16, 256 (1970).Google Scholar
  47. 47.
    Stenger, R. J., Miller, R. A., Williamson, J. N.: Effects of phenobarbital pretreatment on the hepatotoxicity of carbon tetrachloride. Exp. molec. Path. 13, 242 (1970).Google Scholar
  48. 48.
    Whitlock, J. P., Kaufman, R., Baserga, R.: Changes in thymidine kinase and α-amylase activity during isoproterenol-stimulated DNA-synthesis in mouse salivary gland. Cancer. Res. 28, 2211 (1968).Google Scholar
  49. 49.
    Zimek, M.: Diss, Marburg 1972 (in Vorbereitung).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • R. Schulte-Hermann
    • 1
    • 2
  • I. Schlicht
    • 1
    • 2
  • W. Koransky
    • 1
    • 2
  • C. Leberl
    • 1
    • 2
  • C. Eulenstedt
    • 1
    • 2
  • M. Zimek
    • 1
    • 2
  1. 1.Institut für Toxikologie und Pharmakologie der Philipps-Universität MarburgMarburgGermany
  2. 2.Medizinische Klinik und Poliklinik des Klinikum Westend der Freien Universität BerlinBerlinGermany

Personalised recommendations