Advertisement

The opposite effects of magnesium and calcium on the contraction of the guinea-pig ventricular myocardium in dependence on the sodium concentration

  • W. Vierling
  • F. Ebner
  • M. Reiter
Article

Summary

  1. 1.

    Mg2+, in the investigated range up to 19.2 mM, produced a concentration-dependent reduction of the force of contraction (F c ) of the guinea-pig papillary muscle. Addition of 10 mM Mg2+ to a Mg2+-free bath solution diminished F c to about 50%.

     
  2. 2.

    The duration of the action potential was slightly prolonged by 19.2 mM Mg2+ (15 ms at 90% repolarization), and the velocity of depolarization was slightly diminished (by 9%).

     
  3. 3.

    The negative inotropic effect of Mg2+ was primarily the consequence of a decrease in contraction velocity (S1), i.e., of a negative klinotropic effect. There was a 12% diminution of the time to peak force (t1) and a 13% prolongation of the relaxation time (t2) by an elevation of [Mg2+]0 up to 19.2 mM.

     
  4. 4.

    The curve representing the relation between [Ca2+]0 and contraction velocity (S1) was shifted to the right by an increase in [Mg2+]0. There was a linear dependence on Mg2+ of the calcium concentrations that were needed to sustain a definite level of S1 (equieffective [Ca2+]0). A computed regression for this dependence indicates that the negative klinotropic effect of an addition of 10 mM Mg2+ to a solution containing 2.15 mM Ca2+ and no Mg2+ will be antagonized by addition of 0.83 mM Ca2+.

     
  5. 5.

    These results are compatible with a competitive antagonism between Mg2+ and Ca2+ in regard to their binding to a hypothetical receptor. The apparent dissociation constant of the Mg2+-receptor complex would be about 25 mM in the presence of 140 mM Na+.

     
  6. 6.

    The negative klinotropic potency of Mg2+ and the positive klinotropic potency of Ca2+ were augmented to a similar degree by a reduction of [Na+]0.

     
  7. 7.

    The possibility is discussed that Na+ competes with Mg2+ and Ca2+ for a common receptor at the cellular surface. In such a case, for the condition that either 1 Mg2+, 1 Ca2+ or 2 Na+ can be bound by the receptor, the apparent dissociation constant of the Mg2+-receptor complex, as estimated by extrapolation to 0 mM Na+ would be about 6 mM.

     

Key words

Magnesium, negative inotropic effect Cardiac ventricular muscle Mg, Ca, Na antagonism Competitive antagonism with two antagonists 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoni, H., Engstfeld, G., Fleckenstein, A.: Die Mg2+-Lähmung des isolierten Froschmyokards. Ein Beitrag zur Frage der Beziehung zwischen Aktionspotential und Kontraktion. Pflügers Arch. 275, 507–525 (1962)Google Scholar
  2. Baker, P. F., Blaustein, M. P., Hodgkin, A. L., Steinhardt, R. A.: The influence of calcium on sodium efflux in squid axons. J. Physiol. (Lond.) 200, 431–458 (1969)Google Scholar
  3. Baker, P. F., Crawford, A. C.: Mobility and transport of magnesium in squid giant axons. J. Physiol. (Lond.) 227, 855–874 (1972)Google Scholar
  4. Burton, R. F., Loudon, J. R.: The antagonistic actions of calcium and magnesium on the superfused ventricle of the snail Helix Pomatia. J. Physiol. (Lond.) 220, 363–381 (1972)Google Scholar
  5. Colomo, F., Rahamimoff, R.: Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 198, 203–218 (1968)Google Scholar
  6. Douglas, W. W., Rubin, R. P.: The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J. Physiol. (Lond.) 167, 288–310 (1963)Google Scholar
  7. Ebashi, S., Endo, M.: Calcium ion and muscle contraction. Progr. Biophys. Molec. Biol. 18, 123–183 (1968)Google Scholar
  8. Endo, M.: Calcium release from the sarcoplasmic reticulum. Physiol. Rev. 57, 71–108 (1977)Google Scholar
  9. Engbaek, L.: The pharmacological actions of magnesium ions with particular reference to the neuromuscular and the cardiovascular system. Pharmacol. Rev. 4, 396–414 (1952)Google Scholar
  10. Fabiato, A., Fabiato, F.: Effects of magnesium on contractile activation of skinned cardiac cells. J. Physiol. (Lond.) 249, 497–517 (1975)Google Scholar
  11. Garb, S.: The effects of potassium, ammonium, calcium, strontium and magnesium on the electrogram and myogram of mammalian heart muscle. J. Pharmacol. Exp. Ther. 101, 317–326 (1951)Google Scholar
  12. Glitsch, H. G., Reuter, H., Scholz, H.: The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J. Physiol. (Lond.) 209, 25–43 (1970)Google Scholar
  13. Hoffman, B. F., Suckling, E. E.: Effect of several cations on transmembrane potentials of cardiac muscle. Am. J. Physiol. 186, 317–324 (1956)Google Scholar
  14. Jenkinson, D. H.: The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction. J. Physiol. (Lond.) 138, 434–444 (1957)Google Scholar
  15. Ku, D., Akera, T., Tobin, T., Brody, T. M.: Effects of monovalent cations on cardiac Na+, K+-ATPase activity and-on contractile force. Naunyn-Schmiedeberg's Arch. Pharmacol. 290, 113–131 (1975)Google Scholar
  16. Langer, G. A., Frank, J. S.: Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J. Cell Biol. 54, 441–455 (1972)Google Scholar
  17. Langer, G. A., Serena, S. D., Nudd, L. M.: Cation exchange in heart cell culture: correlation with effects on contractile force. J. Mol. Cell. Cardiol. 6, 149–161 (1974)Google Scholar
  18. Lüttgau, H. C., Niedergerke, R.: The antagonism between Ca and Na ions on the frog's heart. J. Physiol. (Lond.) 143, 486–505 (1958)Google Scholar
  19. Niedergerke, R.: Movements of Ca in frog heart ventricles at rest and during contractures. J. Physiol. (Lond.) 167, 515–550 (1963)Google Scholar
  20. Reiter, M.: Der Einfluß der Natriumionen auf die Beziehung zwischen Frequenz und Kraft der Kontraktionen des isolierten Meerschweinchenmyokards. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 261–286 (1966)Google Scholar
  21. Reiter, M.: Die Wertbestimmung inotrop wirkender Arzneimittel am isolierten Papillarmuskel. Arzneimittel-Forsch. (Drug. Res.) 17, 1249–1253 (1967)Google Scholar
  22. Reiter, M., Noé, J.: Die Bedeutung von Calcium, Magnesium, Kalium und Natrium für die rhythmische Erregungsbildung im Sinusknoten des Warmblüterherzens. Pflügers Arch. 269, 366–374 (1959)Google Scholar
  23. Shine, K. I., Douglas, A. M.: Magnesium effects on ionic exchange and mechanical function in rat ventricle. Am. J. Physiol. 227, 317–324 (1974)Google Scholar
  24. Shine, K. I., Douglas, A. M.: Magnesium effects in rabbit ventricle. Am. J. Physiol. 228, 1545–1554 (1975)Google Scholar
  25. Surawicz, B., Lepeschkin, E., Herrlich, H. C.: Low and high magnesium concentrations at various calcium levels. Effect on the monophasic action potential, electrocardiogram, and contractility of isolated rabbit hearts. Circ. Res. 9, 811–818 (1961)Google Scholar
  26. Vierling, W., Reiter, M.: Frequency-force relationship in guinea-pig ventricular myocardium as influenced by magnesium. Naunyn-Schmiedeberg's Arch. Pharmacol. 289, 111–125 (1975)Google Scholar
  27. Vierling, W., Reiter, M., Ebner, F.: The Ca-Mg antagonism on the contractility of the guinea-pig papillary muscle in dependence on the sodium concentration. Naunyn-Schmiedeberg's Arch. Pharmacol. 274, R120 (1972)Google Scholar
  28. Waud, D. R.: Analysis of dose-response curves. In: Methods in pharmacology, Vol. 3, Smooth muscle (E. E. Daniel and D. M. Paton, eds.), pp. 471–506. New York-London: Plenum Press 1975Google Scholar
  29. Weber, A.: The mechanism of the action of caffeine on sarcoplasmic reticulum. J. Gen. Physiol. 52, 760–772 (1968)Google Scholar
  30. Wilbrandt, W., Koller, H.: Die Calciumwirkung am Froschherzen als Funktion des Ionengleichgewichts zwischen Zellmembran und Umgebung. Helv. Physiol. Acta 6, 208–221 (1948)Google Scholar
  31. Wollert, U.: Über das Verhalten des cellulären Calciums von Meerschweinchenvorhöfen unter dem Einfluß einer erhöhten extracellulären Kaliumkonzentration. Pflügers Arch. 289, 191–199 (1966)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • W. Vierling
    • 1
    • 2
  • F. Ebner
    • 1
    • 2
  • M. Reiter
    • 1
    • 2
  1. 1.Institut für Pharmakologie und Toxikologie der Technischen Universität MünchenMünchen 40Germany
  2. 2.Abteilung für Pharmakologie der Gesellschaft für Strahlen- und Umwelftorschung MünchenMünchenGermany

Personalised recommendations