Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 304, Issue 3, pp 289–296 | Cite as

Effects of ozolinone, a diuretic active metabolite of etozoline, on renal function

II. Localization of tubular site of diuretic action by micropuncture in the rat
  • J. Greven
  • H. Klein
  • O. Heidenreich
Article

Summary

The effects of ozolinone (3-methyl-4-oxo-5-piperidino-thiazolidine-2-ylidene) on renal tubular and glomerular functions were studied in rats using clearance and micropuncture techniques. Ozolinone (50 mg·kg−1 i.v., 50 mg·kg−1·h−1i.v.) markedly increased urine volume, urinary sodium excreation and — to a minor extent — also urinary potassium excretion. Fractional tubular sodium reabsorption fell by 14%. Renal blood flow, as measured by an electromagnetic flowmeter, increased considerably during the administration of the drug. Despite the fact that ozolinone increased intratubular hydrostatic pressure, whole kidney as well as single nephron GFR—measured at different tubular sites — remained constant due to an increase in glomerular capillary pressure (stopped flow measurements, servo nulling technique). The diuretic decreased intrinsic reabsorptive capacity of the proximal tubular epithelium as measured with the shrinking drop technique of Gertz, but had no clearcut effects on proximal fractional reabsorption. Fractional reabsorption was evaluated not only from free flow endproximal tubular fluid to plasma inulin measurements but also from transit time and half time of reabsorption (shrinking drop technique). An impressive depression of fluid, sodium and potassium reabsorption occurred in the loops of Henle after ozolinone. No further inhibition of fluid and sodium reabsorption in the distal convoluted tubules could be detected after the drug using a free flow recollection technique. Concerning the tubular site of renal action there is a striking similarity between ozolinone and the strong acting diuretic furosemide, although the chemical structures of these drugs are quite different. Differences between the two drugs exist concerning the endproximal tubular chloride concentration, which was decreased by furosemide but was not affected by ozolinone. This points to different effects of the drugs on proximal tubular bicarbonate reabsorption.

Key words

Diuretics Clearance technique Micropuncture Tubular function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartoli, E., Early, E.: Measurements of nephron filtration rate in the rat with and without occlusion of the proximal tubule. Kidney Int., 3, 372–380 (1973)Google Scholar
  2. Clapp, J. R., Watson, J. F., Berliner, R. W.: Effect of carbonic anhydrase inhibition on proximal tubular bicarbonate reabsorption. Amer. J. Physiol., 205, 693–696 (1963)Google Scholar
  3. Duarte, C. G., Chomety, F., Giebisch, G.: Effect of amiloride, ouabain, and furosemide on distal tubular function in the rat. Amer. J. Physiol., 221, 632–640 (1971)Google Scholar
  4. Fein, H.: Microdimensional pressure measurements in electrolytes. J. Appl. Physiol., 32, 560–564 (1972)Google Scholar
  5. Führ, J., Kaczmarczyk, J., Krüttgen, C. D.: Eine einfache Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchung bei Stoffwechselgesunden und Diabetikern. Klin. Wschr., 33, 729–730 (1955)Google Scholar
  6. Fülgraff, G., Greven, J., Meiforth, A., Osswald, H.: Hydrostatische Drucke in proximalen und distalen Konvoluten und in peritubulären Kapillaren von Rattennieren nach Furosemid und Acetazolamid. Naunyn-Schmiedeberg's Arch. Pharmakol., 264, 76–85 (1969)Google Scholar
  7. Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch., 276, 336–356 (1963)Google Scholar
  8. Gertz, K. H.: Die Anpassung der transtubulären Resorption an die glomeruläre Filtrationsrate. In: Normale und path. Funktion des Nierentubulus (K. J. Ullrich und K. Hierholzer, Hrsg.). Bern-Stuttgart: H. Huber 1965aGoogle Scholar
  9. Gertz, K. H., Mangos, J. A., Braun, G., Pagel, H. D.: On the glomerular-tubular balance in the rat kidney. Pflügers Arch. Ges. Physiol. 285, 360–372 (1965b)Google Scholar
  10. Gertz, K. H., Mangos, J. A., Braun, G., Pagel, H. D.: Pressure in the glomerular capillaries of the rat kidney and its relation to arterial blood pressure. Pflügers Arch. 288, 369–374 (1966)Google Scholar
  11. Goldberg, M.: The renal physiology of diuretics. In: Handbook of physiology, Chapter 28, pp. 1003–1031. Baltimore, Maryland: The Williams and Wilkins Company 1973Google Scholar
  12. Greven, J.: Evidence for redistribution of filtrate among nephrons after β-adrenergic stimulation and blockade. Naunyn-Schmiedberg's Arch. Pharmacol., 282, 171–180 (1974)Google Scholar
  13. Greven, J., Fülgraff, G.: Probleme bei der Bestimmung der prozentualen Resorption aus Halbwertszeit und Passagezeit von proximalen Tubuli von Rattennieren. Pflügers Arch., 315, 38–44 (1970)Google Scholar
  14. Greven, J., Heidenreich, O.: Effect of etozoline on whole kidney function and fluid and electrolyte reabsorption in rat proximal convoluted tubules and loops of Henle. Arzneim.-Forsch./Drug Res. 27, 1755–1757 (1977)Google Scholar
  15. Greven, J., Heidenreich, O.: Effects of ozolinone, a metabolite of the diuretic agent etozoline, on renal function. I. Clearance studies in dogs. Naunyn-Schmiedeberg's Arch. Pharmacol. 304, 283–287 (1978)Google Scholar
  16. Greven, J., Klein, H.: Renal effects of furosemide in glycerol induced acute renal failure. Pflügers Arch., 365, 81–87 (1976)Google Scholar
  17. Herrmann, M., Bahrmann, H., Birkenmayer, E., Ganser, V., Heldt, W., Steinbrecher, W.: Zur Pharmakologie von Etolin. Arzneim.-Forsch./Drug Res. 27, 1745–1754 (1977)Google Scholar
  18. Hierholzer, K., Müller-Suur, R., Gutsche, H.-U., Butz, M., Lichtenstein, I.: Filtration in surface glomeruli as regulated by flow rate through the loop of Henle. Pflügers Arch. 352, 315–337 (1974)Google Scholar
  19. Hilger, H. H., Klümper, J. D., Ullrich, K. J.: Wasserrückresorption und Ionentransport durch die Sammelrohrzellen der Säugetiere (mikroanalytische Untersuchungen). Pflügers Arch. ges. Physiol. 267, 218–237 (1958)Google Scholar
  20. Holzgreve, H.: The pattern of inhibition of proximal tubular reabsorption by diuretics. In: Renal transport and diuretics. (K. Thurau, H. Jahrmärker, eds.). Berlin-Heidelberg-New York: Springer 1969Google Scholar
  21. Hozgreve, H., Frick, A., Rumrich, G., Wiederholt, M., Ullrich, K. J.: Wirkungsweise von Diuretika auf den transtubulären Transport von Natriumchlorid. In: Normale und path. Funktion des Nierentubulus. (K. J. Ullrich und K. Hierholzer, Hrsg.). Bern-Stuttgart: H. Huber, 1965Google Scholar
  22. Knox, F. G., Ott, C., Cuche, J. L., Fasser, J., Haas, J.: Autoregulation of single nephron filtration rate in the presence and the absence of flow to the macula densa. Circulation Res., 34, 836–842 (1974)Google Scholar
  23. Krause, H. H., Dume, T., Koch, K. M., Ochwadt, B.: Intratubulärer Druck, glomerulärer Kapillardruck und Glomerulum-Filtration nach Furosemid und Hydrochlorothiazid. Pflügers Arch. ges. Physiol., 295, 80–90 (1967)Google Scholar
  24. Ramsey, J. A., Brown, R. H. J., Croghan, P. C.: Electrometric titration of chloride in small volumes. J. exp. Biol., 32, 822–824 (1955)Google Scholar
  25. Rector, F. C. Jr., Sellmann, J. C., Martinez-Maldonado, M., Seldin, D. W.: The mechanism of suppression of proximal tubular reabsorption by saline infusions. J. clin. Invest., 46, 47–54 (1967)Google Scholar
  26. Satzinger, G.: Struktur-Aktivitäts-Betrachtungen zu Etozolin, einem neuartigen Diuretikum. Arzneim.-Forsch./Drug Res. 27, 1742–1745 (1977)Google Scholar
  27. Schnermann, J., Davis, J. M., Wunderlich, P., Levine, D. Z., Horster, M.: Technical problems in the micropuncture determination of nephron filtration rate and their functional implications. Pflügers Arch., 329, 307–320 (1971)Google Scholar
  28. Steinhausen, M.: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeiten. Pflügers Arch., 277, 23–25 (1963)Google Scholar
  29. Suki, W. N., Eknoyan, G., Martinez-Maldonado, M.: Tubular sites and mechanisms of diuretic action. Ann, Rev. Pharmacol. 13, 91–106 (1973)Google Scholar
  30. Vollmer, K-O., Hodenberg, A. v., Poisson, A., Gladigau, V., Hengy, H.: Resorption, Verteilung, Metabolismus und Ausscheidung von 14C-Etozolin bei Ratte, Hund und Mensch. Arzneim.-Forsch./Drug Res., 27, 1767–1776 (1977)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. Greven
    • 1
  • H. Klein
    • 1
  • O. Heidenreich
    • 1
  1. 1.Abteilung Pharmakologie der Medizinischen Fakultät der Rheinisch-Westfälischen Technischen Hochschule AachenAachenFederal Republic of Germany

Personalised recommendations