Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 316, Issue 1, pp 42–44 | Cite as

α1- and α2-Adrenoceptors in rat cerebral cortex: Effect of frontal lobotomy

  • Margaret J. Morris
  • Jean-Luc Elghozi
  • Jean-Pierre Dausse
  • Philippe Meyer
Article

Summary

Surgical noradrenergic denervation of the cortex via frontal lobotomy was used to destroy the noradrenergic nerve endings and thus give some insight into the distribution of alpha-adrenoceptors. Frontal lobotomy caused a reduction in noradrenaline content in rat cerebral cortex (2.1±0.4 ng/mg protein for lesioned side, 6.0±0.3 mg/mg protein for nonlesioned side), indicating an effective noradrenergic denervation. The differences in 3H-clonidine and 3H-prazosin binding observed following surgery were a significant decrease in the number of α2-adrenoceptors (115.0±4.5 to 91.7±3.2 fmol/mg protein, n=7, P<0.001) and a smaller but significant increase in the number of α1-adrenoceptors (119.7±2.5 to 131.6±5.4 fmol/mg protein, n=7, P<0.05) in the lesioned cortex. Results of this study indicate that α2-adrenoceptors located on presynaptic noradrenergic terminals represent only a small proportion of the total α2-adrenoceptors in rat cerebral cortex.

Key words

α1- and α2-Adrenoceptors Frontal lobotomy Rat cerebral cortex Noradrenaline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greengrass P, Bremner R (1979) Binding characteristics of 3H-prazosin to rat brain alpha-adrenergic receptors. Eur J Pharmacol 55:323–324Google Scholar
  2. Hoffman BB, Lefkowitz RJ (1980) Alpha-adrenergic receptor subtypes. New Engl J Med 302:1390–1396Google Scholar
  3. Hornung R, Presek P, Glossmann H (1979) Alpha-adrenoceptors in rat brain: direct identification with prazosin. Naunyn-Schmiedeberg's Arch Pharmacol 308:223–230Google Scholar
  4. Keller R, Oke A, Mefford I, Adams RN (1976) Liquid chromatographic analysis of catecholamines. Routine assay for regional brain mapping. Life Sci 19:995–1004Google Scholar
  5. Kobinger W (1978) Central alpha-adrenergic systems as targets for hypotensive drugs. Rev Physiol Biochem Pharmacol 81:39–100Google Scholar
  6. Lindvall O, Bjorklund A, Divac I (1978) Organization of catecholamine neurons projecting to the frontal cortex in the rat. Brain Res 142:1–24Google Scholar
  7. Miach PJ, Dausse JP, Meyer P (1979) Direct biochemical determination of two types of alpha-adrenoceptors in rat brain. Nature 274:492–494Google Scholar
  8. Miach PJ, Dausse JP, Cardot A, Meyer P (1980) 3H-prazosin binds specifically to ‘α2’-adrenoceptors in rat brain. Naunyn-Schmiedeberg's Arch Pharmacol 312:23–26Google Scholar
  9. Morris MJ, Dausse JP, Devynck MA, Meyer P (1980) Ontogeny of α2-adrenoceptors in rat brain. Brain Res 190:268–271Google Scholar
  10. Morrison JH, Molliver ME, Grzanna R (1979) Noradrenergic innervation of cerebral cortex: widespread effects of local cortical lesions. Science 205:313–316Google Scholar
  11. Pimoule C, Briley MS, Langer SZ (1980) Short-term surgical denervation increases 3H-clonidine binding in rat salivary gland. Eur J Pharmacol 63:85–87Google Scholar
  12. Sharma VK, Harik SI, Ganapathi M, Busto R, Banerjee SP (1979) Locus ceruleus lesion and chronic reserpine treatment: effect of adrenergic and cholinergic receptors in cerebral cortex and hippocampus. Exp Neurol 65:685–690Google Scholar
  13. Skolnick P, Stalvey LP, Daly JW, Hoyler E, Davis JN (1978) Binding of alpha- and beta-adrenergic ligands to cerebral cortical membranes: effect of 6-hydroxydopamine treatment and relationship to the responsiveness of cyclic AMP-generating systems in two rat strains. Eur J Pharmacol 47:201–210Google Scholar
  14. Starke K, Langer SZ (1979) A note on terminology for presynaptic receptors. In: Langer SZ, Starke K, Dubocovitch ML (eds) Presynaptic receptors. Pergamon Press, Oxford, p 1Google Scholar
  15. Tanaka T, Starke K (1980) Antagonist/agonist-preferring alphaadrenoceptors or α12-adrenoceptors? Eur J Pharmacol 63:191–194Google Scholar
  16. Tohyama M, Shiosaka S, Sakanaka M, Takagi H, Senba E, Saitho Y, Takahashi Y, Sakumoto T, Shimizu N (1980) Detailed pathways of the raphe dorsalis neuron to the cerebral cortex with use of horseradish peroxidase-3-3′, 5-5 tetramethyl benzidine reaction as a tool for the fiber tracing technique. Brain Res 181:433–439Google Scholar
  17. U'Prichard DC, Greenberg DA, Snyder SH (1977) Binding characteristics of a radiolabelled agonist and antagonist at central nervous system alpha-noradrenergic receptors. Mol Pharmacol 13:454–473Google Scholar
  18. U'Prichard DC, Snyder SH (1979) Distinct alpha-noradrenergic receptors differentiated by binding and physiological relationships. Life Sci 24:79–88Google Scholar
  19. U'Prichard DC, Reisine TD, Mason ST, Fibiger HC, Yamamura HT (1980) Modulation of rat brain alpha- and beta-adrenergic receptor populations by lesion of the dorsal noradrenergic bundle. Brain Res 187:143–154Google Scholar
  20. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48Google Scholar
  21. Vetulani J, Nielsen M, Pilc A, Golembiowska-Nikitin K (1979) Two possible binding sites for 3H-clonidine in the rat cerebral cortex. Eur J Pharmacol 58:95–96Google Scholar
  22. Vizi ES, Ronai A, Harsin LG, Knoll J (1977) Presynaptic modulation by norepinephrine and dopamine of acetylcholine release in peripheral and central nervous system. In: Jenden DJ ed) Cholinergic mechanisms and psychopharmacology. Plenum Press, New York, p 587Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Margaret J. Morris
    • 1
  • Jean-Luc Elghozi
    • 1
  • Jean-Pierre Dausse
    • 1
  • Philippe Meyer
    • 1
  1. 1.INSERM U 7, Research Unit, Department of NephrologyHôpital NeckerParisFrance

Personalised recommendations