Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 316, Issue 1, pp 42–44 | Cite as

α1- and α2-Adrenoceptors in rat cerebral cortex: Effect of frontal lobotomy

  • Margaret J. Morris
  • Jean-Luc Elghozi
  • Jean-Pierre Dausse
  • Philippe Meyer


Surgical noradrenergic denervation of the cortex via frontal lobotomy was used to destroy the noradrenergic nerve endings and thus give some insight into the distribution of alpha-adrenoceptors. Frontal lobotomy caused a reduction in noradrenaline content in rat cerebral cortex (2.1±0.4 ng/mg protein for lesioned side, 6.0±0.3 mg/mg protein for nonlesioned side), indicating an effective noradrenergic denervation. The differences in 3H-clonidine and 3H-prazosin binding observed following surgery were a significant decrease in the number of α2-adrenoceptors (115.0±4.5 to 91.7±3.2 fmol/mg protein, n=7, P<0.001) and a smaller but significant increase in the number of α1-adrenoceptors (119.7±2.5 to 131.6±5.4 fmol/mg protein, n=7, P<0.05) in the lesioned cortex. Results of this study indicate that α2-adrenoceptors located on presynaptic noradrenergic terminals represent only a small proportion of the total α2-adrenoceptors in rat cerebral cortex.

Key words

α1- and α2-Adrenoceptors Frontal lobotomy Rat cerebral cortex Noradrenaline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Greengrass P, Bremner R (1979) Binding characteristics of 3H-prazosin to rat brain alpha-adrenergic receptors. Eur J Pharmacol 55:323–324Google Scholar
  2. Hoffman BB, Lefkowitz RJ (1980) Alpha-adrenergic receptor subtypes. New Engl J Med 302:1390–1396Google Scholar
  3. Hornung R, Presek P, Glossmann H (1979) Alpha-adrenoceptors in rat brain: direct identification with prazosin. Naunyn-Schmiedeberg's Arch Pharmacol 308:223–230Google Scholar
  4. Keller R, Oke A, Mefford I, Adams RN (1976) Liquid chromatographic analysis of catecholamines. Routine assay for regional brain mapping. Life Sci 19:995–1004Google Scholar
  5. Kobinger W (1978) Central alpha-adrenergic systems as targets for hypotensive drugs. Rev Physiol Biochem Pharmacol 81:39–100Google Scholar
  6. Lindvall O, Bjorklund A, Divac I (1978) Organization of catecholamine neurons projecting to the frontal cortex in the rat. Brain Res 142:1–24Google Scholar
  7. Miach PJ, Dausse JP, Meyer P (1979) Direct biochemical determination of two types of alpha-adrenoceptors in rat brain. Nature 274:492–494Google Scholar
  8. Miach PJ, Dausse JP, Cardot A, Meyer P (1980) 3H-prazosin binds specifically to ‘α2’-adrenoceptors in rat brain. Naunyn-Schmiedeberg's Arch Pharmacol 312:23–26Google Scholar
  9. Morris MJ, Dausse JP, Devynck MA, Meyer P (1980) Ontogeny of α2-adrenoceptors in rat brain. Brain Res 190:268–271Google Scholar
  10. Morrison JH, Molliver ME, Grzanna R (1979) Noradrenergic innervation of cerebral cortex: widespread effects of local cortical lesions. Science 205:313–316Google Scholar
  11. Pimoule C, Briley MS, Langer SZ (1980) Short-term surgical denervation increases 3H-clonidine binding in rat salivary gland. Eur J Pharmacol 63:85–87Google Scholar
  12. Sharma VK, Harik SI, Ganapathi M, Busto R, Banerjee SP (1979) Locus ceruleus lesion and chronic reserpine treatment: effect of adrenergic and cholinergic receptors in cerebral cortex and hippocampus. Exp Neurol 65:685–690Google Scholar
  13. Skolnick P, Stalvey LP, Daly JW, Hoyler E, Davis JN (1978) Binding of alpha- and beta-adrenergic ligands to cerebral cortical membranes: effect of 6-hydroxydopamine treatment and relationship to the responsiveness of cyclic AMP-generating systems in two rat strains. Eur J Pharmacol 47:201–210Google Scholar
  14. Starke K, Langer SZ (1979) A note on terminology for presynaptic receptors. In: Langer SZ, Starke K, Dubocovitch ML (eds) Presynaptic receptors. Pergamon Press, Oxford, p 1Google Scholar
  15. Tanaka T, Starke K (1980) Antagonist/agonist-preferring alphaadrenoceptors or α12-adrenoceptors? Eur J Pharmacol 63:191–194Google Scholar
  16. Tohyama M, Shiosaka S, Sakanaka M, Takagi H, Senba E, Saitho Y, Takahashi Y, Sakumoto T, Shimizu N (1980) Detailed pathways of the raphe dorsalis neuron to the cerebral cortex with use of horseradish peroxidase-3-3′, 5-5 tetramethyl benzidine reaction as a tool for the fiber tracing technique. Brain Res 181:433–439Google Scholar
  17. U'Prichard DC, Greenberg DA, Snyder SH (1977) Binding characteristics of a radiolabelled agonist and antagonist at central nervous system alpha-noradrenergic receptors. Mol Pharmacol 13:454–473Google Scholar
  18. U'Prichard DC, Snyder SH (1979) Distinct alpha-noradrenergic receptors differentiated by binding and physiological relationships. Life Sci 24:79–88Google Scholar
  19. U'Prichard DC, Reisine TD, Mason ST, Fibiger HC, Yamamura HT (1980) Modulation of rat brain alpha- and beta-adrenergic receptor populations by lesion of the dorsal noradrenergic bundle. Brain Res 187:143–154Google Scholar
  20. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48Google Scholar
  21. Vetulani J, Nielsen M, Pilc A, Golembiowska-Nikitin K (1979) Two possible binding sites for 3H-clonidine in the rat cerebral cortex. Eur J Pharmacol 58:95–96Google Scholar
  22. Vizi ES, Ronai A, Harsin LG, Knoll J (1977) Presynaptic modulation by norepinephrine and dopamine of acetylcholine release in peripheral and central nervous system. In: Jenden DJ ed) Cholinergic mechanisms and psychopharmacology. Plenum Press, New York, p 587Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Margaret J. Morris
    • 1
  • Jean-Luc Elghozi
    • 1
  • Jean-Pierre Dausse
    • 1
  • Philippe Meyer
    • 1
  1. 1.INSERM U 7, Research Unit, Department of NephrologyHôpital NeckerParisFrance

Personalised recommendations