Skip to main content
Log in

Investigation of the decomposition of 1,3-diaryl-5-(3-chloro-2-quinoxalyl)-formazans by PMR and MASS spectrometry

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

In contrast to triarylformazans, 1,3-diaryl-5-(3-chloro-2-quinoxalyl)formazans are unstable in ordinary organic solvents. When they are heated in chloroform, they undergo acidic cleavage, which leads to the formation of 3-chloro-2-quinoxalylhydrazones of p-substituted benzaldehydes and arenediazonium cations. These compounds, as a result of a redox reaction with the participation of the solvent, are converted to 4-chloro-1-(4-Y-phenyl)-1,2,4-triazolo[4,3-a]quinoxalines, substituted benzenes, nitrogen, and hydrogen chloride. The formation of the latter transforms the entire decomposition process into an autocatalytic process. Effects of chemical polarization of the nuclei (CPN), which unambiguously indicate the intermediate formation of diazoaryl radicals during the process, are observed in the PMR spectra of the final products. Such CPN effects, which were also observed in dimethyl sulfoxide (DMSO) and glacial acetic acid, indicate a process involving the oxidative formation of annelated triazoles from α-azahetarylhydrazones via a radical pathway within a solvent “cage.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. A. V. Kessenikh, L. V. Shmelev, M. N. Stopnikova, and R. V. Poponova, Summaries of Papers Presented at the 3rd All-Union Conference on the Polarization of Electrons and Nuclei and Magnetic Effects in Chemical Reactions [in Russian], Novosibirsk (1981), p. 74.

  2. Yu. A. Sedov, A. I. Zabolot-skaya, and N. V. Koba, Khim. Geterotsikl. Soedin., No. 12, 1705 (1973).

    Google Scholar 

  3. N. P. Bednyagina, I. Ya. Postovskii, A. D. Garnovskii, and O. A. Osipov, Usp. Khim., 44, 1052 (1975).

    Google Scholar 

  4. Yu. A. Sedov, N. N. Shumova, and N. I. Gogoleva, Khim. Geterotsikl. Soedin., No. 5, 709 (1976).

    Google Scholar 

  5. Yu. A. Sedov and M. A. Chernova, Khim., Geterotsikl. Soedin., No. 4, 545 (1978).

    Google Scholar 

  6. B. I. Buzykin, N. N. Bystrykh, and Yu. P. Kitaev, Zh. Org. Khim., 11, 1570 (1975).

    Google Scholar 

  7. B. I. Buzykin, L. P. Sysoeva, and Yu. P. Kitaev, Zh. Org. Khim., 10, 2200 (1974).

    Google Scholar 

  8. N. P. Bednyagina, E. S. Karavaeva, G. N. Lipunova, L. I. Medvedeva, and B. I. Buzykin, Khim. Geterotsikl. Soedin., No. 9, 1268 (1977).

    Google Scholar 

  9. A. F. Levit, T. G. Sterleva, L. A. Kiprianova, and I. P. Gragerov, Teor. Eksp. Khim., 10, 487 (1974).

    Google Scholar 

  10. L. A. Rykova, L. A. Kiprianova, A. F. Levit, and I. P. Gragerov, Teor. Eksp. Khim., 14, 256 (1978).

    Google Scholar 

  11. A. V. Ignatenko, S. V. Rykov, and A. V. Kessenikh, Izv. Akad. Nauk SSSR, Ser. Khim., No. 9, 2022 (1974).

    Google Scholar 

  12. R. Kaptein, J. Chem. Soc., Chem. Commun., 732 (1971).

  13. A. R. Forester, J. M. Hay, and R. N. Thomson, The Organic Chemistry of Stable Free Radicals, London-New York (1968), p. 248.

  14. H. Fischer and M. Lehnig, J. Phys. Chem., 75, 3410 (1971).

    Google Scholar 

  15. T. Suehiro, T. Tashiro, and R. Nakausa, Chem. Lett., No. 11, 1339 (1980).

    Google Scholar 

  16. A. L. Buchachenko, The Chemical Polarization of Electrons and Nuclei [in Russian], Nauka, Moscow (1974), p. 118.

    Google Scholar 

  17. L. Z. Rol'nik, S. M. Kalashnikov, E. V. Pastushenko, S. S. Zlot-skii, and D. L. Rakhmankulov, Zh. Org. Khim., 17, 2515 (1981).

    Google Scholar 

  18. N. N. Lebedev, M. N. Manakov, and V. F. Shvets, The Theory of Technological Processes of Basic Organic and Petrochemical Synthesis [in Russian], Khimiya, Moscow (1975), pp. 267, 285.

    Google Scholar 

  19. A. P. Novikova, M. P. Kozina, D. N. Shigorin, and I. Ya. Postovskii, Zh. Obshch. Khim., 58, 934 (1968).

    Google Scholar 

  20. A. P. Zeif, G. N. Lipunova, N. P. Bednyagina, L. N. Shchegoleva, and L. I. Chernyavskii, Zh. Org. Khim., 6, 2590 (1970).

    Google Scholar 

  21. Yu. P. Kitaev and B. I. Buzykin, Hydrazones [in Russian], Nauka, Moscow (1974), p. 322.

    Google Scholar 

  22. N. M. Sergeev, NMR Spectroscopy [in Russian], Izd. Moskovsk. Gosudarstv. Univ., Moscow (1981), p. 192.

    Google Scholar 

  23. W. Ried, Angew. Chem., 64, 391 (1952).

    Google Scholar 

  24. V. M. Dziomko, M. N. Stopnikova, L. V. Shmelev, Yu. S. Ryabokobylko, G. M. Adamova, and R. V. Poponova, Khim. Geterotsikl. Soedin., No. 10, 1408 (1980).

    Google Scholar 

  25. S. A. Stekhova, V. V. Lapachev, and V. P. Mamaev, Khim. Geterotsikl. Soedin., No. 7, 994 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 413–420, March, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shmelev, L.V., Stopnikova, M.N., Poponova, R.V. et al. Investigation of the decomposition of 1,3-diaryl-5-(3-chloro-2-quinoxalyl)-formazans by PMR and MASS spectrometry. Chem Heterocycl Compd 21, 347–354 (1985). https://doi.org/10.1007/BF00506679

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00506679

Keywords

Navigation