, Volume 59, Issue 1, pp 29–44 | Cite as

The localization of enzyme activities in the pancreatic appendages of Sepia officinalis L. (Cephalopoda)

  • H. H. Donaubauer
  • R. Schipp


In this study, enzyme activities of the pancreatic appendages of the ductus hepatopancreas (the so-called “Pancreas”) in Sepia officinalis L. have been demonstrated by light and electron microscopical methods: Malate dehydrogenase, monoamine oxidase, acid phosphatase, β-glucuronidase, adenosine triphosphatase and carbonic anhydrase were shown by the former, and monoamine oxidase, catalase, glutamic oxalacetic transaminase, choline esterase (non-specific), alkaline phosphatase, acid phosphatase and carbonic anhydrase by the latter technique.

The correlation between enzyme activity and distribution, and the presumed function of the two pancreatic epithelia is discussed.


Public Health Enzyme Activity Adenosine Alkaline Phosphatase Choline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bidder, A.M.: Feeding and digestion in cephalopods. In: Physiology of Mollusca. Wilbur, K.M., Yonge, C.M., (eds.). New York, London: Academic Press 1966Google Scholar
  2. Boadle, M.C., Bloom, F.E.: A method for the structural demonstration of monoamine oxidase activity. III. Internat. Congr. Histochem. Cytochem. New York 1968Google Scholar
  3. Boucaud-Camou, E.: Etude histologique et histochimique de l'appareil digestif de Sepoila atlantica D'Orbigny et Sepia officinalis L. Bull Soc. Linné Normandie 9, 220–243 (1968)Google Scholar
  4. Boucaud-Camou, E.: Etude infrastructurale du pancréas de Sepia officinalis L. Bull. Soc. Zool. France 97, 197–203 (1972)Google Scholar
  5. Boucaud-Camou, E.: Localisation d'activités enzymatiques impliquées dans la digestion chez Sepia officinalis L. Arch. Zool. Exp. Gén. 115, 5–27 (1974)Google Scholar
  6. Buchwalow, I.B., Unger, E., Schulze, W., Schön, R., Raikhlin, N.T.: Hemmung und Stimulierung der ATPase-Aktivität und die nichtenzymatische Hydrolyse von ATP in der elektronenmikroskopischen Histochemie. Histochemistry 44, 1–11 (1975)Google Scholar
  7. Burck, H.C.: Histologische Technik. Stuttgart: Thieme 1969Google Scholar
  8. DeDuve, C.: Function of microbodies (Peroxisomes). J. Cell Biol. 27, 25A (1965)Google Scholar
  9. von Deimling, O.: Die Darstellung phosphatfreisetzender Enzyme mittels Schwermetall-Stimultan-Methoden. Histochemie 4, 48–55 (1964)Google Scholar
  10. Ericcson, J.L.E., Trump, B.F.: Observations on the application of electron microscopy of the lead phosphate technique for the demonstration of acid phosphatase. Histochemie 4, 470–487 (1965)Google Scholar
  11. Glenner, G.G., Burtner, H.J., Brown, G.W.: The histochemical demonstration of monoamine oxidase activity by tetrazolium salts. J. Histochem. Cytochem. 5, 591–600 (1957)Google Scholar
  12. Goebel, A., Puchtler, H.: Zur Darstellung der Carboanhydrase im histologischen Schnitt. Naturwissenschaften 41, 531–532 (1954b)Google Scholar
  13. Hansson, H.P.J.: Histochemical demonstration of carbonic anhydrase activity. Histochemie 11, 112–128 (1967)Google Scholar
  14. Jokota, S.: Electron microscopic demonstration of carbonic anhydrase activity in mouse liver cells. Histochemie 19, 255–261 (1969)Google Scholar
  15. Karnovsky, M.J., Himmelhoch, S.R.: Histochemical localization of glutaminase I activity in kidney. Am. J. Physiol. 201, 786–790 (1961)Google Scholar
  16. Kasa, P., Csillik, B.: Electron microscopic localization of choline esterase by a copper-lead-thiocholine technique. J. Neurochem. 13, 1345–1349 (1966)Google Scholar
  17. Lee, S.H.: The possible role of the vesicles in renal ammonia excretion. An implication of concentrated glutamic oxalacetic transaminase. J. Cell. Biol. 45, 644–649 (1970)Google Scholar
  18. Legg, P.G., Wood, R.L.: Effects of catalase inhibitors on the ultrastructure and peroxidase activity of proliferating microbodies. Histochemie 22, 262–276 (1970)Google Scholar
  19. Lolova, I., Dikov, A.: Histochemical evidence of aminotransferase. IV. Histochemical and electrophoretical investigation of aminotranferases in rat organs. Acta Histochem. (Jena) 53, 12–27 (1975)Google Scholar
  20. Mayahara, H., Hirano, H., Saita, T., Ogawa, K.: The new lead citrate method for the ultracytochemical demonstration of activity of nonspecific alkaline phosphatase (orthophosphoric monoester phosphohydrolase). Histochemie 11, 88–96 (1967)Google Scholar
  21. Müller, J., DaLage, C.: Ultracytochemical demonstration of monoamine oxidase activity in nervous and non-nervous tissues of the rat. J. Histochem. Cytochem. 25, 337–348 (1977)Google Scholar
  22. Panula, P., Rechardt, L.: Age-dependent increase in the non-specific cholinesterase activity of the capillaries in the rat neostriatum. Histochemistry 55, 49–54 (1978)Google Scholar
  23. Pearse, A.G.E.: Histochemistry. Theoretical and applied. 2nd and 3rd eds. London: Churchill 1961/1968Google Scholar
  24. Potts, W.T.W.: Ammonia excretion in Octopus dofleini. Comp. Biochem. Physiol. 14, 339–355 (1965)Google Scholar
  25. Romijn, C.: Die Verdauungsenzyme bei einigen Cephalopoden. Arch. Neerl. Zool. 1, 373–431 (1935)Google Scholar
  26. Sasse, D.: Glykogen in der Ontogenese des Verdauungstraktes-chemomorphologische und stoff-wechselhistochemische Analyse. Ergebn. Anat. Entwickl.-Gesch. 40/2, 1–68 (1968)Google Scholar
  27. Schäfer, A., Höhn, P., Mika, H., Allbach, G.: Enzymhistochemische und elektronenmikroskopische Untersuchungen an der Darmschleimhaut der Ratte im Tagesrhythmus. Acta Histochem. (Jena) 48, 301–319 (1974)Google Scholar
  28. Schipp, R., Höhn, P., Schäfer, A.: Elektronenmikroskopische und histochemische Untersuchungen zur Funktion des Kiemenherzanhangs (Pericardialdrüse) von Sepia officinalis. Z. Zellforsch. 117, 252–274 (1971)Google Scholar
  29. Schipp, R., v. Boletzky, S., Doell, G.: Ultrastructural and cytochemical investigations on the renal appendages and their concrements in dibranchiate cephalopods (Mollusca, Cephalopoda). Z. Morphol. Tiere 81, 279–304 (1975)Google Scholar
  30. Schipp, R., v. Boletzky, S.: The pancreatic appendages of dibranchiate cephalopods. I. The fine structure of the “pancreas” in Sepioidea. Zoomorphologie 86, 81–98 (1976)Google Scholar
  31. Schipp, R.: An indirect demonstration of the substructure of the lamina basalis in the branchial heart of Sepia officinalis L. by means of cholinesterase reaction. Experientia 33, 74 (1977)Google Scholar
  32. Seligman, A.M., Tsou, K.C., Rutenburg, S.H., Cohen, R.B.: Histochemical demonstration of β-glucuronidase with a synthetic substrate. J. Histochem. Cytochem. 2, 209–229 (1954)Google Scholar
  33. Shannon, W.A., Hannah, J., Wasserkrug, L., Seligman, A.M.: The ultrastructural localization of monoamine oxidase (MAO) with tryptamine and a new tetrazolium salt. 2-(2′-benzothiazolyl)-5-styryl-3-(4′-phthalhydrazidyl) tetrazolium chloride. J. Histochem. Cytochem. 22, 170–182 (1974)Google Scholar
  34. Stockinger, L.: Fermentnachweise im Ultrastrukturbereich. In: Histochemie der Ultrastruktur. Acta Histochem. (Jena) Suppl. X, 27–63 (1971)Google Scholar
  35. Veenhuis, M., Bonga, S.D.W.: The cytochemical demonstration of catalase and D-amino acid oxidase in the microbodies of teleost kidney cells. Histochem. J. 9, 171–181 (1977)Google Scholar
  36. Williams, G., Jackson, D.S.: Two organic fixatives for acid mucopolysaccharids. Stain Technol. 31, 189–191 (1956)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • H. H. Donaubauer
    • 1
    • 2
  • R. Schipp
    • 1
    • 2
  1. 1.Institut für Allgemeine und Spezielle Zoologie der Justus-Liebig-UniversitätGiessenFederal Republic of Germany
  2. 2.Station de Biologie MarineArcachonFrance

Personalised recommendations