Chemistry of Heterocyclic Compounds

, Volume 20, Issue 2, pp 165–170 | Cite as

13C NMR spectra of 9-methylcarbazoles and electron conductivity of the carbazole ring

  • V. D. Filimonov
  • T. A. Filippova
  • V. P. Lopatinskii
  • M. M. Sukhoroslova


The effect of substituents in the ring of 9-methylcarbazoles on the 13C NMR chemical shifts was determined. Correlation relationships between the inductive and resonance constants of the substituents and the chemical shifts were found. The transmission properties of the carbazole ring with respect to the electronic effects of substituents in the 3 position were evaluated on the basis of the results obtained. Nonadditivity of the effects of the substituents on the NMR chemical shifts within the limits of one phenyl ring of carbazole relative to monosubstituted benzenes was observed.


Benzene Organic Chemistry Phenyl Chemical Shift Electron Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. L. Martin, M. L. Martin, and S. Odiot, Org. Magn. Reson., 7, 2 (1975).Google Scholar
  2. 2.
    D. F. Ewing, in: Correlation Analysis in Chemistry. Recent Advances, N. B. Chapman and J. Shorter, eds., Plenum Press, New York-London (1978), p. 357.Google Scholar
  3. 3.
    V. D. Filimonov, V. A. Anfinogenov, and S. G. Gorbachev, Khim. Geterotsikl. Soedin., No. 12, 1640 (1982).Google Scholar
  4. 4.
    J. Girand and C. Marzin, Org. Magn. Reson., 12, 647 (1979).Google Scholar
  5. 5.
    G. C. Levy and G. L. Nelson, Carbon-13 Nuclear Magnetic Resonance for Organic Chemistss New York (1972).Google Scholar
  6. 6.
    T. A. Filippova, M. M. Sukhoroslova, V. P. Lopatinskii, and V. D. Filimonov, Khim. Geterotsikl. Soedin., No. 3, 369 (1983).Google Scholar
  7. 7.
    N. Inamoto and S. Masuda, Tetrahedron Lett., No. 37, 3287 (1977).Google Scholar
  8. 8.
    G. Fronza, R. Mondelli, G. Scapini, G. Ronsisvalle, and F. Vittorio, J. Magn. Reson., 23, 437 (1976).Google Scholar
  9. 9.
    R. G. Parker and J. D. Roberts, J. Org. Chem., 35, 996 (1970).Google Scholar
  10. 10.
    R. Baibl, The Interpretation of Nuclear Magnetic Resonance Spectra [Russian translation], Atomizdat, Moscow. (1969).Google Scholar
  11. 11.
    V. D. Filimonov, M. M. Sukhoroslova, V. T. Novikov, and T. V. Vidyagina, Khim. Geterotsikl. Soedin., No. 12, 1654 (1981).Google Scholar
  12. 12.
    G. A. Kalabin, D. F. Kushnarev, V. M. Bzesovskii (Bzesovsky), and G. A. Tchmutova, Org. Magn. Reson., 12, 598 (1979).Google Scholar
  13. 13.
    W. F. Reynolds, J. Chem. Soc., Perkin Trans. II, No. 7, 985 (1980).Google Scholar
  14. 14.
    A. F. Pozharskii, Khim. Geterotsikl. Soedin., No. 6, 723 (1977).Google Scholar
  15. 15.
    J. Bromilow, R. T. C. Brownlee, D. J. Craik, M. Sadek, and R. W. Taft, J. Org. Chem., 45, 2429 (1980).Google Scholar
  16. 16.
    L. M. Litvinenko, E. N. Shved, R. S. Popova, A. F. Popov, and M. D. Pirgo, Dokl. Akad. Nauk SSSR, 258, 359 (1981).Google Scholar
  17. 17.
    S. K. Dayal and R. W. Taft, J. Am. Chem. Soc., 95, 5595 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. D. Filimonov
    • 1
  • T. A. Filippova
    • 1
  • V. P. Lopatinskii
    • 1
  • M. M. Sukhoroslova
    • 1
  1. 1.S. M. Kirov Tomsk Polytechnic InstituteTomsk

Personalised recommendations